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Abstract

Identification and Inference for Functionals of Partially Identified Parameters

Thomas M. Russell

Doctor of Philosophy

Graduate Department of Economics

University of Toronto

2020

This thesis presents three essays related to identification and inference for functionals of partially identified

parameters. This work is motivated by the fact that often the final object of interest in an empirical setting

is not the whole vector of structural parameters, but is instead a single element of the parameter vector

or, more generally, a functional of the parameter vector. A common theme throughout is that bounds

on functionals of partially identified parameters can often be formulated as the solution to two stochastic

optimization problems, one for the upper bound and one for the lower bound. In the first essay, we introduce

an identification and estimation result for bounding functionals of the joint distribution of potential outcomes

from the literature on treatment effects, and present an application to the evaluation of class sizes on test

scores. The second essay considers the problem of inference for functionals of partially identified parameters

defined in terms of stochastic linear programs. Under some regularity conditions, it is shown that a naive

bootstrap procedure can be used to construct uniformly valid confidence sets for the true value of the

partially identified functional of interest. In the final essay, the problem of counterfactuals and policy choice

is considered. It is shown that a specific class of counterfactual objects, called policy transforms, can be

bounded as the solution to two optimization problems without the need to impose parametric distributional

assumptions on the latent variables in the model. The notion of learnability of optimal policies is defined,

and sufficient conditions are provided for a class of policies to be learnable. Finally, finite sample theoretical

guarantees for certain policy rules are derived. All chapters in this thesis are self-contained.
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Jae Jun, Desiré Kedagni, Toru Kitagawa, Joris Pinske, and Adam Rosen. I am also grateful to the 2018

International Association of Applied Econometrics (IAAE) conference organizers for the IAAE travel grant

that made it possible to present the results from this chapter.

Chapter 2: This chapter was written jointly with JoonHwan Cho, a PhD candidate at the University of

Toronto. A previous version of this chapter was circulated as a paper under the title “Inference on Func-

tionals of Set-Identified Parameters Defined by Convex Moments.” We are grateful to Victor Aguirregabiria,

Bulat Gafarov, Christian Gourieroux, Jiaying Gu, Ismael Mourifie, Jeffrey Negrea, Brennan Thompson,

Stanislav Volgushev and Yuanyuan Wan for helpful comments and discussion. We are also grateful to par-

ticipants at the 7th Annual Doctoral Workshop in Applied Econometrics at the University of Toronto, as well

as participants at the 2019 North America Summer Meeting of the Econometric Society at the University of

Washington.

Chapter 3: I thank Jiaying Gu, Ismael Mourifie, Eduardo Souza-Rodrigues, Stanislav Volgushev and Yuanyuan

Wan for feedback and encouragement, and I am especially grateful to JoonHwan Cho for many hours of dis-

cussion that helped to improve this paper.

Finally, I am grateful to Adam Rosen for taking the time to serve as an external member of my Thesis

committee, and for his helpful sugggestions and encouraging remarks.

All the research in this thesis was supported by the Social Sciences and Humanities Research Council of

Canada.

1https://doi.org/10.1080/07350015.2019.1684300

iv

https://doi.org/10.1080/07350015.2019.1684300


www.manaraa.com

Contents

1 Sharp Bounds on Functionals of the Joint Distribution in the Analysis of Treatment

Effects 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Computation and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Appendix 1.A Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Appendix 1.B Core Determining Classes for Treatment Effects . . . . . . . . . . . . . . . . . . . . 24

Appendix 1.C Conditional Probability/Linear Programming . . . . . . . . . . . . . . . . . . . . . 26

Appendix 1.D Consistency and Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendix 1.E Application Robustness Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Appendix 1.F Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Simple Inference on Functionals of Set-Identified Parameters Defined by Linear Mo-

ments 42

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.2 Overview of Results and Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5 Simulation Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendix 2.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Appendix 2.B Further Simulation Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Policy Transforms and Learning Optimal Policies 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.3 Envelope Functions for the Policy Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 On the Learnability of Optimal Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

3.5 Ex-Post Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Appendix 3.A Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Appendix 3.B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Appendix 3.C Additional Details for the Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 156

v



www.manaraa.com

Bibliography 175

vi



www.manaraa.com

Chapter 1

Sharp Bounds on Functionals of the

Joint Distribution in the Analysis of

Treatment Effects

This chapter proposes an identification and estimation method that allows researchers to bound continuous

functionals of the joint distribution of potential outcomes from the literature on treatment effects. The focus

is on a model where no restrictions are imposed on treatment selection. The method can sharply bound

interesting parameters when analytical bounds are difficult to derive, can be used in settings in which in-

struments are available, and can easily accommodate additional model constraints. However, computational

considerations for the method are found to be important, and are discussed in detail.

1.1 Introduction

This chapter investigates identification and estimation of bounds on continuous functionals of the joint

distribution of potential outcomes in the program evaluation literature. The focus throughout is on a

general version of the potential outcome model commonly used in the analysis of treatment effects. Here we

consider the case where the mechanism governing the treatment decision is left completely unrestricted. In

cases where the selection mechanism is left unspecified it is still largely unknown how to obtain a tractable

characterization of the identified set for a general class of parameters, for arbitrary discrete-valued outcomes

and treatments, in a completely nonparametric setting. Indeed, there are still many important parameters in

the program evaluation literature, some very simple, for which no closed-form bounds exist. The fact that no

closed-form bounds exist is often because bounding such parameters requires knowledge of the dependence of

potential outcomes across treated and untreated states; i.e. knowledge of the joint distribution of potential

outcomes. This point has been appreciated by Heckman et al. (1997), who argue that there are many

parameters useful to policy makers that require knowledge of the joint distribution. The procedure proposed

in this chapter allows researchers to bound most of the parameters proposed by Heckman et al. (1997),

and more, in a completely nonparametric setting. Some examples of parameters that can be written as

continuous functionals of the joint distribution include the average treatment effect, the correlation between

potential outcomes, conditional probabilities, and the variance of treatment effects. Examples of situations
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where these parameters are interesting will be discussed. The method is also amenable to the sequential

introduction of additional constraints on the identified set and the inclusion of instruments. In addition,

although we consider the case where the selection mechanism is left unspecified, the framework can also

be used in models that impose more structure. As such, many of the bounds previously proposed in the

literature can be obtained as a special case.

The method accomplishes these goals by abandoning the analytic approach to characterizing the identified

set. As seen in Mourifie et al. (2015), closed-form expressions for bounds on functions of the joint distribution

can be difficult to derive. Instead, we do not derive closed-form analytic expressions for the bounds on any

parameter of interest, but rather show that the bounding problem can be solved as a minimization (for

the lower bound) and maximization (for the upper bound) problem subject to a carefully selected set of

constraints. Despite the fact that the bounds are not represented analytically, our proposed procedure ensures

that they are still sharp.1 To bound a continuous functional of the joint distribution using an optimization

approach requires that the constraints in the optimization problem reflect all of the restrictions imposed

on the joint distribution by the observed distribution. We compare two characterizations of the complete

set of restrictions imposed on the joint distribution of potential outcomes in terms of their computational

tractability. The first characterization is based on Artstein’s Theorem (Artstein (1983)) from random set

theory. This characterization has been explored previously by Galichon and Henry (2011), Beresteanu et al.

(2012) and Chesher and Rosen (2017a), among others, and is also used in the main identification results for

this chapter. The second characterization re-frames the bounding problem as an optimal transport problem,

and has been considered in Galichon and Henry (2011) and Lafférs (2013b, 2015). The two characterizations

are compared based on their computational tractability, and the conditions under which one approach

dominates the other are discussed. A result is then presented that shows a researcher can obtain a consistent

estimate of the identified set using either approach.

Finally, we apply the theoretical results to data from the Tennessee STAR experiment considered in

Krueger (1999) and Krueger and Whitmore (2001). As described in Krueger (1999), the Tennessee STAR

experiment saw students randomized into small and large classrooms with the goal of evaluating the impact

of class size on test scores. However, the experiment was affected by imperfect compliance with treatment

assignment. Using our approach, we find that bounds on the average treatment effect are informative and

consistent with the results of Krueger (1999). However, we also find informative bounds on parameters such

as the correlation between potential outcomes—measuring dependence across counterfactual states—and the

standard deviation of treatment effects—measuring the heterogeneity of treatment effects. The application

shows how bounds on a battery of parameters can be useful in constructing a complete picture of the effects

of the program, and also demonstrates the sensitivity of identification to modelling assumptions.

This chapter extends work by Galichon and Henry (2006, 2009, 2011), Beresteanu and Molinari (2008),

Beresteanu et al. (2011, 2012), and Chesher and Rosen (2017a). Similar to Mourifie et al. (2015), we construct

bounds without imposing structure on the selection mechanism. This approach follows the philosophy of

Manski (2003, 2009) who suggests that researchers first ask what can be learned from the data alone before

imposing additional assumptions. When credible assumptions are available, the procedure in this chapter

also serves as a framework to facilitate the introduction of additional model assumptions and structure.2

This study is also similar in spirit to growing work in computational approaches to partial identification.

Early work in this literature was done by Balke and Pearl (1994) for bounds on counterfactual probabilities.

Bounds on the average treatment effect under a variety of assumptions using linear programming are pre-

1Bounds on a parameter are called sharp if they are the smallest bounds consistent with the observed data and the researcher’s
model assumptions.

2The approach is also in the spirit of Ginther (2000), who shows estimates of returns to schooling are sensitive to the selection
mechanism specified by the researcher. If results are sensitive to the imposed selection mechanism, then remaining agnostic on
the nature of selection may be the only credible approach.

2
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sented in Chiburis (2010), Lafférs (2015), Demuynck (2015), and Torgovitsky (2016). Outside of treatment

effects, other interesting uses of linear programming in partial identification can be found in Honoré and

Lleras-Muney (2006), Honoré and Tamer (2006), Manski (2007) and Molinari (2008). Finally, this chapter

is also related to the papers of Fan et al. (2017) and Firpo and Ridder (2019). However, unlike Fan et al.

(2017) and Firpo and Ridder (2019) our method does not require that the marginal distributions of potential

outcomes be identified. Furthermore, Firpo and Ridder (2019) focus specifically on bounds on functionals

of the distribution of treatment effects (i.e. the difference between potential outcomes), and not bounds on

functionals of the joint distribution of potential outcomes, which are considered here.

1.2 Identification

1.2.1 Preliminaries

Recall that in typical treatment effect models we observe realizations of the random variables (Y,D) ∈ Y×D,

where Y represents the outcome variable, and D represents the finite-valued treatment variable. Without

loss of generality we take D = {0, 1, . . . ,K − 1}. When possible, we use the notation W := (Y,D) and

W := Y × D. With this defined, we assume throughout that W is a finite subset of a Euclidean space,

and denote the σ-algebra on W as 2W . In treatment effect models there is also an unobserved random

vector U := (Y0, Y1, . . . , YK−1) ∈ U , where we assume that U = YK ; i.e. the support of each variable Yd for

d = 0, . . . ,K − 1, is common and equal to the finite support Y of Y .3 Finally, we denote the σ−algebra on

U as 2U and we refer to the vector of random variables U as potential outcomes.

All random variables in this chapter are assumed to be defined on a probability space (Ω,A, P ). Let PW

denote the distribution induced on W by (Y,D), and let PU denote the distribution induced by U on U . In

particular:

PW (A) = P (ω : W (ω) ∈ A), A ∈ 2W ,

PU (B) = P (ω : U(ω) ∈ B), B ∈ 2U .

Combining everything leads to the following familiar definition of the potential outcome model :

Definition 1.2.1 (Potential Outcome Model). A potential outcome model (POM) is one in which Y is

determined by:

Y =

K−1∑
d=0

Yd1{D = d},

where |Y| ≥ 2 and K ≥ 2.

Importantly, note that the mechanism that determines the selection variable D has not been specified;

we return to this point in the next subsection.

The objective of this chapter is to recover the distribution PU , and functionals thereof, using the observed

distribution of (Y,D). In this section we assume that the researcher has knowledge of the distribution PW .

The fundamental problem of causal inference is that we do not observe a full realization of the vector

(Y0, Y1, . . . , YK−1) for any individual. In addition, in the absence of randomly-assigned treatment, there may

be dependence between the random variables D and U . Because of these issues, even simple parameters

such as the average treatment effect are impossible to point-identify without additional assumptions.

3This assumption means that the support of the random variable U is informed by the support of the observed outcomes;
although natural, researchers may find this restrictive in some circumstances.
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Given the possible dependence between potential outcomes U and the treatment status D, researchers

typically introduce an instrumental variable Z : Ω → Z, where we assume that Z is a finite set. For now

we assume the instrument Z is a random variable that affects the treatment choice D but is independent

of potential outcomes U (denoted by Z ⊥⊥ U). Since the use of an instrument is common in the program

evaluation literature, we extend all results for the POM to the case where an instrument is available. In

such a case, we let PW |Z denote the conditional distribution induced on W by (Y,D) given a generic value

of Z = z. In particular:

PW |Z(A) = P (ω : W (ω) ∈ A|Z = z), A ∈ 2W .

In this chapter we leave the dependence between Z and D completely unrestricted.

With the preliminaries in place, we provide some discussion of functionals f of the joint distribution PU .

Heckman et al. (1997) argue that there are many interesting parameters in the program evaluation literature

that require knowledge of the joint distribution. One trivial example is to take f to represent the average

treatment effect between treatments D = d and D = d′ for d, d′ ∈ D:

f(PU ) =

∫
U

(Yd′ − Yd) dPU .

However, we might also consider other less typical parameters (in no particular order):

(i) The correlation between potential outcomes:

f(PU ) =

∫
U (Yd − E(Yd)) (Yd′ − E(Yd′)) dPU(∫

U (Yd − E(Yd))
2
dPU

)1/2 (∫
U (Yd′ − E(Yd′))

2
dPU

)1/2
.

This parameter provides a simple measure of the dependence of outcomes across the states D = d and

D = d′. The importance of capturing the dependence across counterfactual states is well-illustrated in

Honoré and Lleras-Muney (2006) in a competing risk model of cancer and cardiovascular disease. It

is also well-illustrated in the application of Mourifie et al. (2015) to the case of the STEM versus non-

STEM field choice, where the level of dependence across counterfactual states may determine policy

recommendations.4 Note that to bound the correlation coefficient, one must jointly bound the mean

and variance of potential outcomes: in general one cannot recover sharp bounds on the correlation

coefficient by first bounding the mean and variance of Yd and Yd′ , and then computing bounds for

the correlation coefficient via a ‘plug-in’ estimator. Given this difficulty, it is not clear how one might

bound this parameter analytically.

(ii) Voting Criterion:

f(PU ) =

∫
U
1{Yd′ > Yd} dPU .

This parameter provides a measure of the proportion of individuals who benefit from treatment d′

versus treatment d. This parameter is discussed in Heckman and Vytlacil (2007) as an important

parameter that requires knowledge of the joint distribution. Closed-form bounds for this parameter in

the binary outcome case are provided by Mourifie et al. (2015).

4STEM stands for Science, Technology, Engineering and Mathematics.

4
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(iii) Distributional Mobility:

f(PU ) = PU (Yd′ ∈ A|Yd ∈ B) =

∫
1{Yd′ ∈ A, Yd ∈ B} dPU∫

1{Yd ∈ B} dPU
.

This parameter measures the probability that treatment helps an individual obtain an outcome Yd′ ∈ A,

given his/her outcome under treatment d is fixed at Yd ∈ B. Mourifie et al. (2015) provide bounds for

this parameter, but do not claim sharpness in the presence of an instrument. Indeed, in the presence

of an instrument, no known closed-form sharp bounds exist for this parameter.

(iv) Variance of Treatment Effects:

f(PU ) =

∫
U

((Yd′ − Yd)− E(Yd′ − Yd))2
dPU .

The variance of treatment effects can provide a measure of the heterogeneity of treatment effects. If

the potential outcomes Yd′ and Yd are dependent, then this parameter requires knowledge of the joint

distribution PU .

Note that not every parameter is a continuous functional of the joint distribution. For example, the interquar-

tile range, for which sharp bounds are provided by Mourifie et al. (2015), in general cannot be expressed as

a continuous functional of the joint distribution.

The remainder of this section describes a general framework that can be used to derive sharp bounds on

any parameter that can be written as a continuous functional of the joint distribution of potential outcomes.

The method is based on the following intuition. First, we characterize the set of all distributions PU that

are consistent with the observed distribution PW and the researcher’s assumptions. Denote this set as PU .

Under the assumption that U is finite, this set is convex and compact with respect to the euclidean norm.

Next, we bound any continuous function f : PU → R by noting that the image of a continuous function over

a compact set is an interval [f `, fu] where:

fu = sup
PU∈PU

f(PU ), f ` = inf
PU∈PU

f(PU ). (1.1)

Obtaining sharp bounds on the function f then reduces to solving these two optimization problems.

1.2.2 Identification Without an Instrument

The formal identification argument applies results from random set theory.5 This section reviews some of

the concepts provided in Beresteanu et al. (2012) on the application of random set theory to the POM, and

then provides a result that allows researchers to easily bound functionals of the joint distribution.

Let P†U be the collection of all admissible distributions, and let G denote a model correspondence G :

U → Y mapping unobservables to observables. The set of admissible distributions P†U represents the set

of all distributions that satisfy the researcher’s a priori restrictions on the distribution of U .6 Recall that

PU represents the collection of distributions that satisfy the researcher’s restrictions and that are consistent

with the observed distribution PW , so we have PU ⊆ P†U . In the absence of any additional restrictions, we

5Random set theory is a convenient tool in partial identification, and has been used previously by Galichon and Henry (2006),
Galichon and Henry (2009), Galichon and Henry (2011), Beresteanu and Molinari (2008), Beresteanu et al. (2011, 2012), and
Chesher and Rosen (2017a), among others.

6For example, we may take P†U to be the set of distributions that satisfy the monotone treatment response or monotone
treatment selection conditions discussed in Manski and Pepper (2000). These assumptions are discussed further in Appendix
1.C. Alternatively, in the presence of an instrument, we might consider the independence, mean independence, and quantile
independence conditions discussed in Chesher and Rosen (2017a).

5
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can simply take P†U to be the (|U| − 1)-dimensional probability simplex. The model correspondence for the

POM is given by:

G(y0, y1, . . . , yK−1) =

{
(y, d) ∈ W : y =

K−1∑
k=0

yk · 1{d = k}

}
, (1.2)

for (y0, y1, . . . , yK−1) ∈ U . Following the definition provided, for example, in Tamer (2003), Lewbel (2007),

Chesher and Rosen (2012) and Chesher and Rosen (2017a), a model is incomplete if, given values of the

latent and exogenous variables, it is not possible to uniquely determine the values of the outcome variables.

Applying this definition, the POM described so far is incomplete, namely since the mechanism generating the

(possibly endogenous) variable D has not been specified. In other words, given values of the latent potential

outcomes (Y0, . . . , YK−1), it is not possible to uniquely determine the values of the outcome variables (Y,D)

since the mechanism generating D is left completely unrestricted. The result of model incompleteness is that

the mapping G : U → W is given by a correspondence rather than a function.7

There are two obvious reasons why a researcher might refrain from specifying the selection equation, and

thus opt to work with the incomplete POM. First, any unobserved heterogeneity affecting choices and/or

outcomes is left completely unrestricted.8 Second, although there may be weak assumptions on the selection

mechanism that “complete” the incomplete POM described here, complete models are a special case of

incomplete models, but not the reverse. Thus, while we focus (for now) on what can be identified from the

data alone, “completing” the model with additional assumptions can be accommodated by the framework

discussed in this chapter under minor modifications.9

Taking the incomplete nature of this model as given, we can equivalently focus on learning the distribution

PU through the reverse correspondence:

G−1(y, d) =

{
(y0, y1, . . . , yK−1) ∈ U : y =

K−1∑
k=0

yk · 1{d = k}

}
. (1.3)

Upon closer inspection, note the correspondenceG−1(y, d) will map (y, d) to the all vectors (y0, y1, . . . , yK−1)

with yd = y and with all other elements taking arbitrary values in Y. Following the discussion in Beresteanu

et al. (2012), G−1 : W → U is a random closed set (see Appendix 1.A for details). There are possibly

many random variables Ũ that can map within this random set. We say that a given random variable Ũ

can rationalize the distribution of (Y,D) if there exists a random variable Ũ∗ and a random vector (Y ∗, D∗)

such that Ũ∗ ∼ Ũ , (Y ∗, D∗) ∼ (Y,D), and Ũ∗ ∈ G−1(Y ∗, D∗) a.s. In this case, Ũ∗ is called a selection

from the random closed set G−1(Y ∗, D∗). The incomplete nature of the POM implies that there are many

random variables Ũ—and thus many distributions induced by the latent variables Ũ—that could rationalize

the observed distribution PW given the correspondence in (1.2). In such models, the observed distribution

characterizes the random set G−1(Y,D) through the generalized likelihood :

T (A) := PW (G−1(Y,D) ∩A 6= ∅), (1.4)

defined for every A ∈ 2U ; see the discussion in Galichon and Henry (2011). The functional T is sometimes

called the capacity functional of the random set G−1(Y,D) (see Appendix 1.A for a formal definition). Note

that, given G : U → W is also a random set, we could have also defined a capacity functional for the random

7For an especially clear discussion of the distinction between complete and incomplete models, see Chesher and Rosen (2012).
8For an example of a case where this matters, consider the results of Ginther (2000) who shows the sensitivity of estimates

of the returns to schooling to assumptions on the selection mechanism.
9In this sense we follow the philosophy of Manski (2003, 2009) by first providing researchers a means of computing bounds

under minimal assumptions. After computing these bounds as a first-pass, researchers may then impose credible assumptions
to increase the informativeness of the analysis.

6
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set G(U) as:

TW(A) := PU (G(U) ∩A 6= ∅), (1.5)

for every A ∈ 2W . We say that the capacity functional given in (1.4) has been defined on the observables,

whereas the capacity functional given in (1.5) has been defined on the unobservables. Although we focus

on the case where the capacity functional is defined on the observables, from an identification perspective,

these characterizations are equivalent; see Chesher and Rosen (2017a) for a discussion.

Example 1. Consider the POM and suppose we are in a binary outcome, binary treatment setting, where

Y ∈ {0, 1} and D ∈ {0, 1}. Then we have:

Y = {(Y,D) : Y ∈ {0, 1}, D ∈ {0, 1}} = {(0, 0), (1, 0), (0, 1), (1, 1)} ,

U = {(Y0, Y1) : Y0 ∈ {0, 1}, Y1 ∈ {0, 1}} = {(0, 0), (1, 0), (0, 1), (1, 1)} .

In addition, we can define PW = (p00, p10, p01, p11) and PU = (q00, q10, q01, q11) where

p00 = PW (Y = 0, D = 0), q00 = PU (Y0 = 0, Y1 = 0),

p10 = PW (Y = 1, D = 0), q10 = PU (Y0 = 1, Y1 = 0),

p01 = PW (Y = 0, D = 1), q01 = PU (Y0 = 0, Y1 = 1),

p11 = PW (Y = 1, D = 1), q11 = PU (Y0 = 1, Y1 = 1).

The reverse correspondence G−1 : Y → U for this model is defined by:

G−1(y, d) = {(y0, y1) : y = y1d+ (1− d)y0}.

The capacity functional associated with this reverse correspondence is given by (1.4), taking A to be any

subset of U . For example, if A = {(0, 0), (0, 1)}, then the capacity functional is given as:

T (A) = T ({(0, 0), (0, 1)}) = PW (G(Y,D)−1 ∩ {(0, 0), (0, 1)} 6= ∅) = p00 + p01 + p11. (1.6)

Given the capacity functional of the random set G−1(Y,D), it is possible to characterize PU , the set of

all distributions PU ∈ P†U that are consistent with the observed distribution PW . As discussed in Beresteanu

et al. (2012), a result from random set theory called Artstein’s Theorem (Artstein (1983))—stated formally

in Appendix 1.A—provides us with the necessary and sufficient conditions for the existence of a random

variable Ũ with distribution PU ∈ P†U that can rationalize the observed distribution PW through the model

correspondence G. The necessary and sufficient conditions provided by Artstein’s Theorem are captured by

a set of inequality constraints on the distribution PU :

PU (A) ≤ T (A), ∀A ∈ 2U .

This implies that we can write our collection PU—the collection of PU ∈ P†U that are consistent with the

observed distribution PW—as:

PU = {PU ∈ P†U : PU (A) ≤ T (A) for all A ∈ 2U}. (1.7)

Since U is a finite set, to verify that a given distribution PU can rationalize the observed distribution

7
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PW requires the researcher to check if a finite number of linear inequality constraints are satisfied. If the

constraints defining P†U are also linear, then PU is a polyhedron contained in the (|U| − 1)-dimensional

probability simplex. See Figure 1.1 for a visual representation of Artstein’s inequalities in the setting of

Example 1.

q00 = 1

q01 = 1

q10 = 1

q11 = 1

Figure 1.1: A representation of the constraints imposed by Artstein’s Theorem on the probability simplex in the case
when Y,D ∈ {0, 1}. Here, the triangular pyramid represents the probability 3-simplex, and the shaded region within
shows the distributions satisfying all of Artstein’s inequalities.

Example 1 (Cont’d). Consider again the case where Y ∈ {0, 1} and D ∈ {0, 1}. By Artstein’s Theorem,

the joint distribution PU must respect the inequality constraint PU (A) ≤ T (A) for every subset A of U . For

example, taking A = {(0, 0), (0, 1)}, Artstein’s Theorem implies that PU must satisfy:

PU (A) ≤ T (A), ⇐⇒ q00 + q01 ≤ p00 + p01 + p11. (1.8)

Note that there are 2|U| = 16 subsets of U , and thus Artstein’s Theorem implies that there are 16 such linear

inequality constraints that must be satisfied by PU for it to be consistent with the observed distribution PW .

The following Theorem shows how the characterization of the collection PU can be used to bound con-

tinuous functionals of the joint distribution f : PU → R.

Theorem 1.2.1. Let P†U be a convex set of admissible distributions. If PU is non-empty, then for every

continuous functional f : PU → R, the identified set for f is a non-empty interval [f `, fu] where:

fu = sup
PU∈PU

f(PU ), f ` = inf
PU∈PU

f(PU ). (1.9)

The intuition is straightforward. The collection PU provides us all distributions PU on U that can

rationalize the observed distribution PW on W. Thus, to bound a function of the joint distribution PU ,

we need only to search over the set PU for the distributions that minimize and maximize our function of

interest. Compactness and convexity of PU and continuity of f then guarantees that arg min f(PU ) ∈ PU
and arg max f(PU ) ∈ PU , and that the identified set for f is an interval.

Although the Theorem is stated for the case when G is a correspondence—so as to accommodate the

POM—it applies equally to the case when G is a function (i.e. when the model is complete). In addition,

although we have stated the Theorem using the capacity functional defined in equation (1.4) on the ob-

servables, the Theorem could have been written in an analogous manner using the capacity functional (1.5)

defined on the unobservables.

Note that Theorem 1.2.1 is of interest from a practical point of view since—although it is an identification

result—it suggests a straightforward method of estimation. Indeed, since the restrictions that define PU are

linear in many cases, there exists a wide range of functions f for which computing fu and f ` reduces to

8
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solving a linear programming problem. Even in cases when f is not linear, an increasing f , or concave/convex

f can also lead to optimization problems that can be solved efficiently.10

Note that this variational representation of the problem has significant advantages over analytic charac-

terizations. Indeed, analytic characterizations must be derived for each parameter separately to ensure that

they exploit all the information under the set of model assumptions. Analytic characterizations may quickly

become unreasonable to provide, and for many interesting parameters, analytic characterizations simply do

not yet exist, even in very simple environments.11 In contrast, Theorem 1.2.1 provides a variational repre-

sentation that we know produces sharp bounds, since by construction the bounds must respect all of the

restrictions implied by the data on the distribution of unobservables. By imposing constraints on P†U , the

results also extend easily to accommodate additional modelling assumptions (see the discussion in Appendix

1.C).

Note that bounds on many different functionals f(PU ) can be computed without modifying the set of

constraints in the program defined by (1.9); i.e. once the constraints for the model correspondence G have

been established, the researcher is able to compute sharp bounds for many objects by simply changing the

objective function. This result is a remarkable improvement over analytic characterizations which would

require deriving bounds for all examples of f(PU ) above, and then proving the sharpness of the derived

bounds. As is shown in the application in Section 1.4, this feature allows the researcher to easily compute a

variety of causal parameters to give a complete view of the effects of a program.

1.2.3 Identification with an Instrument

With an instrument Z ∈ Z we can consider the same model correspondence as before:

G(y0, y1, . . . , yK−1) =

{
(y, d) ∈ W ×Z : y =

K−1∑
k=0

yk · 1{d = k}

}
, (1.10)

Here we do not impose any structure between D and Z, or D and any of the other unobservable variables.

Given the assumption that Z ⊥⊥ U , for any PU ∈ P†U we must have PU |Z(A|Z = z) = PU (A). For each

z ∈ Z, we can define the conditional capacity functional:

T (A|Z = z) = PW |Z(G−1(Y,D) ∩A 6= ∅|Z = z),

for every A ∈ 2U . Let PU |Z denote the set of distributions that are admissible and also satisfy Artstein’s

inequalities subject to the conditional capacity functional:

PU |Z = {PU ∈ P†U : PU (A) ≤ T (A|Z = z) for all A ∈ 2U}.

Note that since the probability measure PU must respect Artstein’s inequalities for all values of z ∈ Z, the

identified set PU in the presence of an instrument can be written:

PU =
⋂
z∈Z
PU |Z . (1.11)

The construction of the identified set in this way in the presence of an instrument is discussed in Beresteanu

et al. (2012), and a proof of its validity is provided in their Proposition 2.5. It is also discussed at length by

10Even if f does not meet these criteria, non-linear optimization problems subject to linear constraints can be solved very
quickly by many software applications, including Matlab, when the gradient of f is provided to the solver.

11For example, in the presence of an instrument there currently exists no analytic sharp bounds for the parameter P (Yd(ω) ∈
A|Y1−d(ω) ∈ B), even when Y and D are binary.

9
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Chesher and Rosen (2017a), with an analogous result to that in Beresteanu et al. (2012) provided by their

Theorem 4.

Intuitively, this identified set is constructed by listing Artstein’s inequalities for every value of z ∈ Z,

and then finding the distributions PU that respect all inequalities. The following example provides a sense

of the method:

Example 2. Consider again the case where Y,D ∈ {0, 1}. Under the assumption U ⊥⊥ Z, the distribution

of (Y0, Y1) is “unaffected” by the presence of the instrument in the sense that PU |Z(Y0 ∈ A, Y1 ∈ B|Z =

z) = PU (Y0 ∈ A, Y1 ∈ B). Since the outcome and treatment variable are binary we can still write the

distribution of (Y0, Y1) as PU = (q00, q10, q01, q11); however, we must now define the conditional distribution

PW |Z(z) = (p00(z), p10(z), p01(z), p11(z)), where pij(z) = PW |Z(Y = i,D = j|Z = z). Then Artstein’s

inequalities can be written for each fixed Z = z. Since Artstein’s inequalities must hold for every z ∈ Z,

each inequality must hold for the infimum over the values of z ∈ Z. For example, taking A = {(0, 0), (0, 1)},
Artstein’s inequality for A when an instrument is available is given by:

q00 + q01 ≤ inf
z∈Z
{p00(z) + p01(z) + p11(z)} .

When we write Artstein’s inequalities by taking the infimum over all z ∈ Z on the right hand side, we

call this “intersecting” over the value of z ∈ Z.

After enumerating the entire relevant set of Artstein’s inequalities as in the above example, it is straight-

forward to see that the bounding procedure suggested by Theorem 1.2.1 is then applicable to the case with an

instrument where the identified set is as defined in equation (1.11); see Beresteanu et al. (2012) for additional

discussion of this approach.

Mean independence can be accomplished in a similar manner, i.e. by writing all of Artstein’s inequalities

unconditional on Z and then imposing the constraint that E[Yd] = E[Yd|Z = z] for all values of z. In

addition, conditional joint independence U ⊥⊥ Z|X, where X is a vector of covariates, can also be easily

accommodated by the method by writing the full set of Artstein’s inequalities conditional X = x for each x,

and then intersecting over values of Z as above.

Note that there is no guarantee that the identified set defined by equation (1.11) is non-empty. By

definition, emptiness of the identified set in (1.11) implies that there is no random variable U ∈ U that

can generate the observed distribution while respecting the condition Z ⊥⊥ U and the restrictions on P†U .

Thus, when P†U is unrestricted, emptiness of the identified set provides evidence against the independence

assumption. This intuition forms the basis for the test of independence proposed by Kédagni and Mourifie

(2017).

1.2.4 Relation to Previous Work

In the treatment effect literature, Mourifie et al. (2015) provide sharp bounds on a variety of parameters—

with and without an instrument—in the case of binary outcome and binary treatment. Theorem 1.2.1

provides a sharp characterization for parameters such as the distributional mobility parameter for which

Mourifie et al. (2015) do not claim sharpness. In addition, Theorem 1.2.1 enables the bounds to be imple-

mented easily for treatment effect models with arbitrary discrete-valued outcome and treatment rather than

for just the binary outcome, binary treatment case focused on in Mourifie et al. (2015).

Theorem 1.2.1 is related to Proposition 1 in Torgovitsky (2016), which provides an analogous result but

10
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for the class of complete econometric models.12 Theorem 1.2.1 extends the result of Torgovitsky (2016) to

incomplete econometric models using random set theory. These incomplete models include the POM (with

and without instrument) that is of primary interest in this chapter. Since incomplete models nest complete

models, Theorem 1.2.1 implies Proposition 1 in Torgovitsky (2016) when G is a function rather than a

correspondence.

The relationship between the approach based on Artstein’s Theorem and an alternative approach using

the Aumann expectation in Beresteanu et al. (2011) is discussed at length in Beresteanu et al. (2012).

However, while these authors consider Artstein’s Theorem for bounding probability distributions, they do

not consider using Artstein’s Theorem to bound functionals of the joint distribution. In contrast to the

Aumann-expectation approach, Theorem 1.2.1 provides a bounding approach for discrete-valued outcomes,

and requires solving only two optimization problems.

1.3 Computation and Estimation

Although Theorem 1.2.1 suggests a straightforward method of estimating bounds on functionals of the

joint distribution, it may not always be computationally feasible. To appreciate the computational burden

implied by Theorem 1.2.1, note that the identified set constructed via Artstein’s inequalities is restricted by

2min(|Y|,|U|)−2 constraints.13 As noted by Beresteanu et al. (2012), when the support of the outcome variable

is large, the number of inequalities that constrain the identified set can become prohibitive. For example,

when |Y| = 20, |D| = 2, there are over a trillion constraints on the identified set (precisely, 1.1× 1012). This

makes estimation computationally infeasible.

In this section, we follow the approach of Galichon and Henry (2011) and explore two methods of efficiently

computing bounds on functionals of the joint distribution. The first method involves finding the smallest

known collection of non-redundant constraints implied by Artstein’s Theorem. The second method is based

on reframing the bounding problem as an optimal transport problem. All results in this section are given for

the case when an instrument is available. However, researchers should keep in mind that the conclusions in

this section may change if more structure is added to the POM (such as specifying a selection mechanism),

since the additional structure may change the model correspondence. In either case, the arguments of this

section show how a researcher might decide between alternative approaches of computing the identified set.

We then conclude the section by providing a result that shows estimation of the identified set under an

optimization-based procedure is consistent.

1.3.1 The Core Determining Class Approach

The idea that Artstein’s Theorem may provide many redundant inequalities appears first in the concept of a

core determining class introduced by Galichon and Henry (2011). In our context a core determining class is

12Indeed, the model in Torgovitsky (2016) is complete. This is because of the way Torgovitsky (2016) solves the initial

conditions problem in his analysis of state dependence. For example, in his leading case of a binary outcome, he models state

dependence nonparametrically through the recursive model:

Yit = Yit−1Uit(1) + (1− Yit−1)Uit(0) = Uit(Yit−1) ∀t ≥ 1, (1.12)

where Yit ∈ {0, 1} is the outcome in period t, and Uit(y) are the counterfactual states in period t if Yit−1 = y

is imposed exogenously. To solve the initial conditions problem, Torgovitsky (2016) imposes that Ui0 = Yi0. How-

ever, with Ui0 known, it is straightforward to see from the recursive nature of the model given by (1.12) that a vector

U = (Ui0, Ui1(0), . . . , UiT (0), Ui1(1), . . . , UiT (1)) uniquely determines that path of outcomes {Yit}Tt=0.

13We can take the minimum in the exponent since it is equivalent (from an identification perspective) to write Artstein’s
inequalities either on the observables using the capacity functional given by (1.5) or unobservables using the capacity functional
given by (1.4).
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any collection S of sets A ∈ 2U such that if PU (A) ≤ T (A) holds for all all A ∈ S, then the same inequality

holds for all A ∈ 2U .14 This definition is consistent with the definition presented in Galichon and Henry

(2011) and Chesher and Rosen (2017a). From this definition, any A ∈ 2U with A /∈ S imposes a redundant

constraint on the characterization of the identified set.

Luo and Wang (2016) present conditions that allow for the elimination of redundant constraints implied

by Artstein’s Theorem and, to the best of our knowledge, they provide the smallest available core determining

class. Luo and Wang (2016) call their core determining class the exact core determining class. Using the

specific structure of the correspondence for the POM and the mathematical results of Luo and Wang (2016),

we characterize both the precise number and type of sets in the exact core determining class for the POM.15

In particular, we are able to show that the number of restrictions on the joint distribution implied by the

exact core determining class is small relative to the number of restrictions implied by Artstein’s Theorem,

even though the exact core determining class contains the same sharp information as Artstein’s inequalities.

Results on the precise nature of sets in the exact core determining class in the POM are given in Lemmas 1,

2 and 3, which have been moved to Appendix 1.B for brevity.

By Lemma 1, we find that any set S in the exact core determining class is a collection of vectors

(y0, . . . , yK−1) ∈ U such that all vectors in S share exactly K − 1 elements in common. Lemma 3 then says

that if K > 2 or |Y| ≤ K, then the statement in the previous sentence completely characterizes the exact core

determining class; otherwise, if K = 2 and K < |Y|, then the exact core determining class contains precisely

every set of at most |Y| − 1 vectors with K − 1 elements in common. Using these conditions, a researcher

can easily select the a priori redundant constraints implied by Artstein’s Theorem. Visual depictions of sets

in the exact core class are given in Figure 1.2 in the case when D = {0, 1} to aid with interpretation of these

conditions.

Using Lemmas 1, 2 and 3, it is also possible to show that in the POM with an instrument there are
(
|Y||D| +

∑|Y|
r=2 |Y||D|−1|D|

(|Y|
r

)
− |Y||D|

)
· |Z|, if |D| = 2 and |Y| > |D|,

(
|Y||D| +

∑|Y|
r=2 |Y||D|−1|D|

(|Y|
r

))
· |Z|, otherwise,

sets in the exact core determining class. The full version of this result is provided in Appendix 1.B. This result

provides us with the number of sets in the exact core determining class for the POM, and helps us compare

the exact core’s computational tractability to other methods. Using our results, redundant inequalities can

be efficiently identified and removed from the bounding problem.

However, it is also important to note that under the exact core determining class approach of Luo and

Wang (2016), it is not possible to compute the non-redundant constraints and then “intersect” by taking the

infimum over all values of z ∈ Z. Intuitively, this is because the results of Luo and Wang (2016) are valid

only when the observed distribution PW is a proper probability measure, and the infimum of PW |Z(·|Z = z)

over values of z ∈ Z is generally not a probability measure. Because of this feature, there are situations

where the core determining class approach can be less computationally efficient then Artstein’s inequalities;

namely, when the support of the instrument is large relative to the support of both the observables (Y,D)

14For the case of a core determining class in a general incomplete model, we refer readers to Galichon and Henry (2011).
15Note that the exact core determining class of Luo and Wang (2016) does not depend on whether we define Artstein’s

inequalities on the observables or the unobservables; for a given problem, the size of their core determining class is fixed.
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(a) The sets A, B and C are examples of sets that are in
the exact core determining class. In particular, A, B and
C satisfy the conditions in Lemmas 1 and 3.
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C′

A′

B′
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b b b b b b

b b b b b b

b

b

b

b

b

b

b

(b) The sets A′, B′ and C′ are examples of sets that are
NOT in the exact core determining class. In particular, A′

and B′ are redundant by Lemma 1, and C′ is redundant
by Lemma 3.

Figure 1.2: Examples of sets that are in, and are not in, the exact core determining class in the case of two potential
outcomes (Y0, Y1).

and the support of the unobservable potential outcomes U .16

1.3.2 The Dual Approach

In this subsection we show how the duality result of Galichon and Henry (2006, 2011) can be used to construct

an efficient estimation method.17 To this end, let MG|z(PW |Z , PU ) denote the set of Borel probability

distributions, conditional on Z = z, with marginals PW |Z and PU with support on Graph(G) given by:

Graph(G) := {(u,w) : w ∈ G(u)}.

Then we can define the following set:

P∗U |Z = {PU ∈ P†U : ∃π ∈MG|z(PW |Z , PU )}. (1.13)

In other words, PU defines the set of all distributions PU such that there exists a joint distribution

π ∈ MG|z(PW |Z , PU ) that can rationalize the observed distribution PW |Z through the correspondence G.

In the empirical game setting of Galichon and Henry (2011), for example, this characterization is equivalent

to establishing, for each candidate PU , the existence of an equilibrium selection mechanism. Although the

16To see this, let |Sec| represent the number of inequalities given in the exact core determining class, and let |Sa| represent
the number of inequalities given by the full set of Artstein’s inequalities. When an instrument is included we must write the
inequalities in the exact core determining class for each value of z ∈ Z, giving a total of |Z| · |Sec| inequalities. However,
when using the full set of Artstein’s inequalities we can “intersect” over the values of z ∈ Z. Thus, when using the full set of
Artstein’s inequalities with an instrument the number of inequalities needed is unchanged at |Sa|. When the support of the
instrument is large it is thus possible to have |Sa| < |Z| · |Sec|.

17We call this the “dual approach” in the spirit of Galichon and Henry (2006), who show that if M(PW , PU ) represents the

set of Borel probability measures with marginals PW and PU with support on Graph(G) := {(u,w) : w ∈ G(u)}, then:

sup
π∈M(PW ,PU )

Eπ [−1{W /∈ G(U)}] = 0 ⇐⇒ inf
B∈2U

[PU (B)− PW (G−1(W ) ∩B 6= ∅)] = 0.

Indeed, the problems on the left and right can be shown to be dual optimal transport problems. It is easy to see that the
problem on the right defines the set of all distributions PU that satisfy Artstein’s inequalities. The dual problem on the left is
the one discussed in this subsection.
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interpretation in our context is different, the idea in Galichon and Henry (2011) can still be applied. Define:

P∗U :=
⋂
z∈Z
P∗U |Z .

This collection is connected to the collection PU characterized by Artstein’s inequalities through Theorem 3

in Galichon and Henry (2011). Indeed, define:

PU |Z = {PU ∈ P†U : PU (A) ≤ T (A|Z = z) for all A ∈ 2U},

P∗U |Z = {PU ∈ P†U : ∃π ∈MG|z(PW |Z , PU )}.

Then an application of Theorem 3 in Galichon and Henry (2011) shows that PU |Z = P∗U |Z , and thus PU = P∗U .

From a practical perspective, this duality result provides an alternative method of estimation by showing

that:

fu := sup
PU∈PU

f(PU ) = sup
PU∈P∗U

f(PU ), f ` := inf
PU∈PU

f(PU ) = inf
PU∈P∗U

f(PU ). (1.14)

In fact, this method was used by Lafférs (2013a, 2015) to bound the average treatment effect. The following

example shows how to implement this approach:

Example 1 (Cont’d). Consider again the case where Y ∈ {0, 1} and D ∈ {0, 1}, and suppose we have

access to an instrument Z ∈ {0, 1} satisfying Z ⊥⊥ (Y0, Y1). Recall that pij(z) = PW |Z(Y = i,D = j|Z = z)

and qij = PU (Y0 = i, Y1 = j). In addition, recall the set of non-redundant inequalities implied by Artstein’s

Theorem for this model:

q00 ≤ p00(z) + p01(z), (1.15.1)

q01 ≤ p00(z) + p11(z), (1.15.2)

q10 ≤ p10(z) + p01(z), (1.15.3)

q11 ≤ p10(z) + p11(z), (1.15.4)

q00 + q01 ≤ p00(z) + p01(z) + p11(z), (1.15.5)

q00 + q10 ≤ p00(z) + p01(z) + p10(z), (1.15.6)

q01 + q11 ≤ p00(z) + p10(z) + p11(z), (1.15.7)

q10 + q11 ≤ p01(z) + p10(z) + p11(z), (1.15.8)

where each inequality must hold for all z ∈ {0, 1}. In combination with the constraint qij ≥ 0, we have that

these constraints provide a sharp characterization of the identified set PU . Now let π(z) be a vector with

typical entry πij,k(z) := P (Y0(ω) = i, Y1(ω) = j,D(ω) = k|Z(ω) = z), and consider the constraints:

π00,0(z) + π01,0(z) = p00(z), (1.16.1)

π00,1(z) + π10,1(z) = p01(z), (1.16.2)

π10,0(z) + π11,0(z) = p10(z), (1.16.3)

π01,1(z) + π11,1(z) = p11(z), (1.16.4)

where πij,k(z) ≥ 0. Note that for any vector π(z) satisfying (1.16.1)-(1.16.4), we can recover the vector q

via:

π00,0(z) + π00,1(z) = q00, (1.17.1)
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π01,0(z) + π01,1(z) = q01, (1.17.2)

π10,0(z) + π10,1(z) = q10, (1.17.3)

π11,0(z) + π11,1(z) = q11. (1.17.4)

In addition, since we have assumed Z ⊥⊥ (Y0, Y1), we must ensure that the vectors π(0) and π(1) can

generate the same probability vector q. Thus in addition to imposing constraints (1.16.1)-(1.16.4) for z = 0

and z = 1, we must also impose the independence restriction given by:

π00,0(z) + π00,1(z) = π00,0(z′) + π00,1(z′), (1.18.1)

π01,0(z) + π01,1(z) = π01,0(z′) + π01,1(z′), (1.18.2)

π10,0(z) + π10,1(z) = π10,0(z′) + π10,1(z′), (1.18.3)

π11,0(z) + π11,1(z) = π11,0(z′) + π11,1(z′), (1.18.4)

where z, z′ ∈ {0, 1}. By Theorem 3 in Galichon and Henry (2011), the set of probability vectors q satisfying

Artstein’s inequalities for all z is equal to the set of probability vectors q recovered through (1.17.1) - (1.17.4)

from any probability vectors π(z), for z = 0, 1, satisfying (1.16.1) - (1.16.4) and the independence restrictions

(1.18.1) - (1.18.4).

Given an instrument Z, a simple calculation shows that for the dual result in the presence of an instrument

there are |Y||D| · |D| · |Z| parameters, and |Y| · |D| · |Z|+ (|Z| − 1) · |Y| · |D| constraints.18

1.3.3 Comparison

We compute the number of constraints and parameters under different environments to provide a comparison

of each characterization (Artstein’s inequalities, the exact core, and the dual approach). First we consider

the case where |D| = |Z| = 2, and we vary the cardinality of the support Y; the results for this case are

displayed in Table 1.1. Second, we consider the case where |D| = |Y| = 2, and we vary the cardinality of the

support Z; the results for this case are displayed in Table 1.2.

|Y|=2 |Y|=3 |Y|=4 |Y|=5 |Y|=10 |Y|=20

Artstein Parameters 4 9 16 25 100 400
Constraints (Obs.) 15 63 255 1,023 1.0× 106 1.1× 1012

Constraints (Unobs.) 15 511 65,535 3.4× 107 1.3× 1030 2.6× 10120

Artstein (Exact Core) Parameters 4 9 16 25 100 400
Constraints 16 54 192 550 40,680 8.4× 107

Dual Problem Parameters 16 36 64 100 400 1,600
Constraints 12 18 24 30 60 120

Table 1.1: Number of parameters and non-redundant constraints from Artstein’s Theorem, the smallest core, and
the dual problem in the presence of an instrument (excluding non-negativity constraints) where D,Z ∈ {0, 1}.

Table 1.1 shows that when the support Y has large cardinality, the number of constraints implied by

Artstein’s Theorem and the exact core can be prohibitively large. In contrast, the dual approach implies

a much smaller number of constraints, but a larger number of parameters. The reduction in the number

of constraints afforded by the dual approach is found to have a significant impact on computational time;

indeed, unreported simulations show that the dual approach tends to be much faster when D and Z have

small support and Y has large support. However, the dual approach is hampered by the fact that it requires

18Here I do not count non-negativity constraints.
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|Z|=200 |Z|=300 |Z|=400 |Z|=500 |Z|=1000 |Z|=2000

Artstein Parameters 4 4 4 4 4 4
Constraints (Obs.) 15 15 15 15 15 15
Constraints (Unobs.) 15 15 15 15 15 15

Artstein (Exact Core) Parameters 4 4 4 4 4 4
Constraints 1600 2400 3200 4000 8000 16000

Dual Problem Parameters 1600 2400 3200 4000 8000 16000
Constraints 1596 2396 3196 3996 7996 15996

Table 1.2: Number of parameters and non-redundant constraints from Artstein’s Theorem, the smallest core, and
the dual problem in the presence of an instrument (excluding non-negativity constraints) where D,Y ∈ {0, 1}.

a larger number of parameters which can introduce additional computational costs, especially when the

objective function is non-linear.

However, when the support of the instrument Z is large and the support of Y and D are small the

dual approach may no longer generate the smallest number of constraints. Table 1.2 shows that when the

support of the instrument Z is large the dual approach requires significantly more parameters than either

Artstein’s inequalities or the exact core approach. In addition, both the exact core and dual approach

require a similar number of constraints. However, the number of parameters and the number of constraints

implied by Artstein’s Theorem remains constant: this is because—unlike the other approaches—Artstein’s

inequalities can be “intersected” over values of z ∈ Z. This property unique to Artstein’s inequalities make

them especially computationally tractable when the cardinality of Z is large. However, we note that even

when |Z| is large, computation time using the dual approach can still be negligible if the functional f of

interest is linear. However, for non-linear objective functions when the support Z is large and |Y| is small,

using the characterization from Artstein’s Theorem will allow for significant computational advantages, since

the number of parameters (and thus the space over which we must optimize our functional of interest) will

be much smaller.

Also note that neither Table 1.1 or 1.2 seem to support the use of the exact core approach, which is either

dominated by the dual approach (in Table 1.1) or by Artstein’s inequalities (in Table 1.2). When trying

other combinations of |D|, |Z| and |Y| we were unable to find environments where the exact core approach

was clearly dominant, although there were many situations when its computational time was comparable to

either the dual approach or Artstein’s inequalities.

These results also have implications for researchers who wish to perform inference on the resulting bounds.

Recently there has been increased interest in inference problems for subvectors or functionals of a partially

identified parameter vector; references include Chernozhukov et al. (2015), Bugni et al. (2017), Kaido et al.

(2019a), Belloni et al. (2018), Gafarov (2019) and Cho and Russell (2019).19 While a full discussion of the

benefits and drawbacks of these inference procedures is beyond the scope of this chapter, we remark that it

will be computationally easier to apply many of these inference procedures when there are less constraints,

so that the results in this section are valuable in this regard as well. In addition, researchers should be

aware that the number of constraints in the model—and whether the constraints are equality or inequality

constraints—may also have implications for testing power, and thus may substantially affect the results of

subvector and functional inference procedures. For a description of how to use the procedure in Chernozhukov

et al. (2015) for a setting similar to the one in this chapter, we refer readers to the discussion in Torgovitsky

(2016). However, we also remark that research on inference methods that exploit the full structure of the

optimization-based bounds presented in this chapter is still an active area of research.

19While there have been many other papers in the literature on inference for the full partially identified vector—PU in our
case—we remark these procedures deliver confidence sets for subvectors or functionals that tend to be highly conservative
(although still valid). See the introduction in Kaido et al. (2019a) for details of this issue of projection conservatism in partially
identified models.
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Overall, using a program that chooses the most computationally efficient approach for the problem at

hand (either Artstein’s inequalities, the exact core approach, or the dual approach) is found to alleviate a

significant amount of the computational burden associated with the optimization problems in Theorem 1.2.1,

making the approach in this chapter tractable to run on a standard laptop computer for many bounding

problems.

1.3.4 Estimation

To conclude this section, we show the conditions under which the optimization-based bounding procedure

proposed in this chapter is consistent. Consistency is presented without an instrument for simplicity, but

the result also holds when a instrument with finite support is available. Finally, the proof of consistency is

given for the case when PU is defined by Artstein’s inequalities rather than the dual approach, although it

is applicable to both approaches (since both approaches give numerically identical characterizations of PU ).

Proceeding, consider the usual empirical measure:

Pn(A) :=
1

n

n∑
i=1

1{(Yi, Di) ∈ A},

where {(Yi, Di)}ni=1 is an i.i.d. sample from the true distribution PW . Let Θf (Pn) = [f `(Pn), fu(Pn)] denote

the estimated identified set for f , and let Θf (PW ) = [f `(PW ), fu(PW )] denote the population identified set.

Consistency in the estimation of sets is defined in terms of the Hausdorff distance dH , which furnishes a

metric on the space of non-empty compact subsets of Rd.

Theorem 1.3.1. Fix any continuous functional f : PU → R. Suppose that (a) P†U is restricted only through

linear (in)equality constraints; (b) the Jacobian of the linear equality constraints defining PU (if any) has full

row rank; (c) {Wi}ni=1 is i.i.d. from some probability measure PW with finite support; and (d) int (PU ) 6= ∅.
Then Θf (Pn)

p→ Θf (PW ) in the Hausdorff metric.

Note that Theorem 1.3.1 shows that estimation of bounds on any continuous functional of the joint

distribution can be completed using Artstein’s inequalities without the need for a tuning parameter. We

refer the reader to Appendix 1.D for a full discussion of conditions required for the Theorem.

1.4 Application

We apply the results in this chapter to the well-known Tennessee STAR experiment analyzed in Krueger

(1999) and Krueger and Whitmore (2001). Beginning in 1985, the Tennessee STAR experiment was a

longitudinal study looking to analyze the impact of class size on the academic performance of students. The

study saw students and teachers randomized within schools into classrooms of varying sizes; small classrooms

had 13 - 17 students, and regular classrooms had between 22 - 25 students. The regular classrooms were

divided between regular classrooms with and without a teacher aide. The objective of the study was to

evaluate the impact of reduced class sizes on students’ performance on standardized tests for reading and

math. As discussed in Boozer and Cacciola (2001), attending small classes may raise student performance

because of both a “pure classroom effect,” arising from greater resources per student, as well as a peer-

feedback (or “social multiplier”) effect arising from long-term exposure to a higher quality peer environment.

When decomposing the effects of Project STAR, Boozer and Cacciola (2001) find that the pure classroom

effect accounts for most of the gains in student performance in the first year of exposure, but that the

social-multiplier effect accounts for most of the gains in later years.
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The initial random assignment of students to classrooms was done within schools at the kindergarten

level. Students were then expected to respect their initial assignment for four years (i.e. until the end of

grade 3). A detailed background of the study is provided in Boyd-Zaharias et al. (2007). As discussed in

Krueger (1999), although the initial assignment of students to classrooms in Project STAR was random,

the study was affected by a number of experimental issues. First, although nearly all students respected

the initial assignment, approximately 10 percent of students switched between small and regular classrooms

between each grade. Second, there is evidence of a significant amount of attrition in the sample; Krueger

(1999) reports that half of the students present in kindergarten were missing in at least one subsequent year.

Third, due to the (possibly non-random) attrition from the study and the natural movement of families in

and out of areas that included a participating school, the actual range of class sizes differed from the initial

experimental targets; for example, the true range of class sizes for “small” class sizes was 11 - 20 students,

and the true range for “regular” class sizes was 15 - 30 students. Fourth, for children entering a school after

kindergarten, the assignment of children to small or regular classrooms depended on the slots available in

each classroom. As a result, the randomization for newly entering students was not perfectly balanced across

classroom sizes. Finally, children assigned to regular classrooms were re-randomized each year into regular

classes with a teacher aide and regular classes without a teacher aide. The result is that children initially

assigned to small classrooms in kindergarten were more likely to stay with the same cohort of peers up to

grade three. If the stability in the composition of a child’s peers has an effect on academic performance, this

effect may contribute to any differences between test scores of children in small versus regular classes.

We use the methods in this chapter to provide various measures of the causal effects of the program on

student performance. The outcome of interest is the student’s average class percentile ranking on reading

and math exams administered in grade 3 and grade 8. Specifically, for grade 3 the outcome is the average

percentile ranking on the math and reading sections of the Stanford Achievement Test (SAT), and for grade

8 the outcome is the average percentile ranking on the math and reading sections of the Comprehensive Test

of Basic Skills (CTBS). The grade 8 outcome is included to evaluate the long-term impact of the program.

The treatment indicator D is equal to 1 if a child has been in a classroom with ≤ 17 students for every

grade before grade 4. Note that the actual class size—not the label of the class as small or regular—is

used to construct the treatment variable. Also note that, due to the possibly non-random switching or

assignment to small class sizes in the grades above kindergarten, the treatment variable may be correlated

with potential outcomes. Finally, consistent with the majority of studies on class size reduction policies,

including Krueger (1999) and Krueger and Whitmore (2001), we will implicitly assume the stable unit

treatment value assumption (SUTVA) of Rubin (1980); that is, Di = d implies Yi = Ydi (c.f. Angrist et al.

(1996)).20 Violations of this assumption could occur, for example, if the researcher believes that students’

potential outcomes should be defined with respect to the exact number of students in the classroom, rather

than the dichotomous “small” and “large” distinction, or that a student’s potential outcomes should be

defined with respect to the specific identity of his/her classmates. However, for simplicity of exposition we

will abstract away from these concerns and will leave the exploration of these issues using our method for

future research.

The sample is restricted to those who participated in the STAR program in kindergarten, and for whom

data on grade 3 and grade 8 test scores were available. The final sample size was n = 2357 students.

Summary statistics for the selected sample are displayed in Table 1.3. The table shows sample means and

standard deviations broken down by treatment/control groups (i.e. D = 1 and D = 0) and groups based

on the random assignment to small and regular classrooms (i.e. Z = 1 and Z = 0). The table displays

information on the sample characteristics, and on the outcomes by subgroup. The reported outcomes are

20Note that using the percentile ranks as an outcome variable mechanically violates SUTVA in finite sample, although the
mechanical violation becomes negligible in large samples. I thank an anonymous referee for pointing this out.
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the average student percentile ranks (across all participating schools) for the reading and math test scores

in grade 3 and grade 8. Note by construction the average percentile rank across the full sample is exactly

50/100, so that the values in the table can be interpreted relative to this number. Notice in Table 1.3 that

sample characteristics are well-balanced across Z = 1 and Z = 0, which provides some evidence that the

randomization was successful.21 However, as we can see from the table, there was significant noncompliance

to randomization. On average, percentile ranks appear to be higher both for students who were assigned to

small classes, and for students who actually attended small classes from kindergarten to grade 3. Notice that

across all tests and grades, average percentile ranks are higher for students who attended small classes from

kindergarten to Grade 3 (D = 1) versus those students who were assigned to small classes in kindergarten

(Z = 1); this provides some heuristic evidence of non-random selection between the small and regular

classrooms.

Table 1.3: Summary Statistics for the Selected Sample

D = 1† D = 0† Z = 1†† Z = 0††

Sample Poor 0.34 0.35 0.35 0.34
Characteristics (0.47) (0.48) (0.48) (0.48)

Female 0.53 0.56 0.54 0.55
(0.50) (0.50) (0.50) (0.50)

Black 0.21 0.25 0.24 0.24
(0.41) (0.43) (0.43) (0.43)

Average Grade 3 55.72 48.38 54.66 48.00
Reading Percentile* (28.33) (28.82) (28.77) (28.68)

Grade 8 52.66 49.23 51.96 49.18
(28.77) (28.86) (28.83) (28.86)

Average Grade 3 54.73 48.67 53.56 48.48
Math Percentile* (28.59) (28.81) (28.75) (28.79)

Grade 8 53.55 49.00 51.95 49.18
(28.89) (28.79) (28.78) (28.88)

Observations 527 1830 716 1641
†: D = 1 if student attends a small class from kindergarten to Grade 3
††: Z = 1 if student is randomly assigned to a small class in kindergarten
* : Note that by definition the average percentile rank for the full sample is 50 for both the reading and math test scores.

For the purpose of the application, percentile ranks for math and reading scores were averaged together

to create a single outcome variable, as in Krueger (1999). Also as in Krueger (1999), the treatment effects

studied in the application will be “reduced-form” in the sense that they will aggregate the pure classroom

effect and social multiplier effect studied in Boozer and Cacciola (2001), and discussed at the beginning of

this section, into a single treatment effect for small class sizes. To reduce the computational burden for non-

linear parameters—like the correlation and standard deviation—the percentiles were first discretized using

the K-means algorithm. A variety of bin numbers were used (i.e. 25, 30, and 35 bins) to show robustness

of the results to the discretization. Also, given evidence from Krueger (1999) that the effect of a teacher

aide was minimal, we consider the regular classes and the regular classes with an aide as simply ‘regular

classes,’ and we evaluate the effect of treatment against this combined group. Finally, to obtain informative

bounds, we impose a relaxed version of the monotone treatment response (MTR) assumption. Specifically,

we impose that P (Y1 > Y0) ≥ 0.95. This implies that we consider only data-generating processes under

which students strictly benefit from small classes sizes with 95% probability. This corresponds with our

prior belief that smaller class sizes are beneficial to most students, consistent with the evidence in Krueger

(1999) and Krueger and Whitmore (2001) on the impact of the Tennessee STAR program.

21Note that in the Tennessee STAR Experiment randomization occurred at the school level.
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To illustrate the flexibility of the method we provide bounds for the following parameters. Note that

many of the parameters are constructed relative to the median percentile rank in the sample; this parameter

is denoted Median(Y), where the median is taken after the K-means algorithm is applied to the outcome

variable (and as such Median(Y) may differ slightly from 50/100). It is also important to keep in mind

that Median(Y) is only the median of the observed outcome, and is not necessarily the median of the

counterfactual outcomes Y0 and Y1.

(i) P (Y0 ≤Median(Y ), Y1 > Median(Y )): The joint probability of having a percentile rank in the regular

classroom (Y0) lower than the median rank of the observed outcome Y and a percentile rank in the

small classroom (Y1) greater than the median rank of the observed outcome Y . Since Median(Y) is

the observed outcome, and not necessarily the median of the counterfactual outcomes Y0 and Y1, this

parameter can provide a measure of symmetry in the joint distribution of unobserved counterfactual

outcomes.

(ii) E[Y1 − Y0]: The average treatment effect, which measures the average gain in rank as a result of

attending a small versus regular classroom.

(iii) P (Y1 > Y0): The voting criterion, which measures the proportion of students whose rank strictly

improves from attending smaller classrooms.

(iv) P (Y1 > Median(Y )|Y0 ≤ Median(Y )): The conditional probability of being above the median rank in

the small classroom given the individual is below the median rank in the regular classroom.

(v) P (Y0 ≤ Median(Y )): The proportion of people who would have a below median rank in the regular

classroom. Therefore, if P (Y0 ≤Median(Y )) > 0.5, for example, then we know that the median of the

unobserved rank Y0 is less than the median of Y . Using this method we could also recover information

on other quantiles.

(vi) P (Y1 > Median(Y )): The proportion of people who would have an above-median rank in the small

classroom. See the discussion in the previous point.

(vii) Corr(Y0, Y1): The correlation between student ranks in regular versus small classrooms. A positive

correlation indicates that students with low ranks in regular class rooms are also likely to have low

ranks in small classrooms.

(viii)
√
V ar(Y1 − Y0): The standard deviation of treatment effects, which is the standard deviation of the

distribution of gains in rank as a result of attending a small versus regular classroom.

The bounds on the parameters above are estimated in Matlab using the Gurobi plug-in for the linear

programs, and the KNITRO plug-in for the non-linear programs. The results of the analysis are displayed in

Table 1.4. First note that Table 1.4 shows that the results are insensitive to the number of bins used in the

discretization. Next, note that under the assumption of instrument independence and the MTR assumption

we are able to obtain informative bounds on interesting parameters.

For the grade 3 outcomes in Table 1.4, the joint probability P (Y0 ≤ Median(Y ), Y1 > Median(Y )) is

in the range [0.09, 0.26], meaning between 9 and 26 percent of the population have an unfavorable (below

median) outcome in the untreated state, and a favorable (above median) outcome in the treated state. For

the grade 8 outcomes the result is similar, with values in the range [0.04, 0.22]. An extended analysis for this

parameter is given in Appendix 1.E.

For the average treatment effect, both the grade 3 and grade 8 bounds are informative, with ranges of

[3.99, 18.32] percentile points and [0.95, 16.27] percentile points. These ranges indicate substantial benefits
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Table 1.4: Bounds on School Achievement from the Tennessee STAR Experiment Assuming P (Y1 > Y0) ≥ 0.95.**

Y = Grade 3 percentile rank Y = Grade 8 percentile rank
D = Small class K-3 D = Small class K-3

Lower Bound Upper Bound Lower Bound Upper Bound

P (Y0 ≤Median(Y ), Y1 > Median(Y )) :† Bins=25 0.09 0.26 0.04 0.22
Bins=30 0.08 0.26 0.04 0.22
Bins=35 0.09 0.26 0.04 0.22

E[Y1 − Y0]: Bins=25 4.80 19.27 1.42 17.03
Bins=30 4.24 19.13 0.88 16.32
Bins=35 3.99 18.32 0.95 16.27

P (Y1 > Y0) :∗ Bins=25 0.11 0.97 0.05 0.97
Bins=30 0.11 0.98 0.05 0.98
Bins=35 0.11 0.98 0.05 0.98

P (Y1 > Median(Y )|Y0 ≤Median(Y )) :† Bins=25 0.14 0.97 0.07 1.00
Bins=30 0.14 0.96 0.07 1.00
Bins=35 0.17 1.00 0.07 1.00

P (Y0 ≤Median(Y )) :† Bins=25 0.55 0.55 0.52 0.52
Bins=30 0.55 0.55 0.52 0.52
Bins=35 0.53 0.53 0.52 0.52

P (Y1 > Median(Y )) :† Bins=25 0.52 0.66 0.50 0.66
Bins=30 0.50 0.66 0.49 0.65
Bins=35 0.53 0.69 0.48 0.65

Corr(Y0, Y1): Bins=25 0.04 0.50 0.08 0.49
Bins=30 0.04 0.50 0.07 0.50
Bins=35 0.02 0.50 0.09 0.50√

V ar(Y1 − Y0): Bins=25 2.38 28.11 2.94 27.03
Bins=30 2.44 28.46 1.05 26.87
Bins=35 2.07 28.12 1.13 27.52

†: Recall that Median(Y) is the median of the observed outcome, but not necessarily the median of Y0 or Y1.
∗: The parameter P (Y1 > Y0) is the only parameter estimated without the MTR assumption P (Y1 > Y0) ≥ 0.95.
∗∗: All values are computed using the “plug-in” estimator for the empirical probabilities, as described in Appendix 1.D.

from attending small class sizes, and are consistent with the results of Krueger (1999) and Krueger and

Whitmore (2001).22

The voting criterion P (Y1 > Y0) is the only parameter estimated without imposing the MTR assump-

tion.23 For both the grade 3 and grade 8 results we find that the bounds on the voting criterion are generally

large and uninformative in this application. Indeed, for the grade 3 outcomes we find that the proportion

of students who strictly benefit from the program is in the range [0.11, 0.98]. For the grade 8 outcomes it

is in the range [0.05, 0.98]. This provides evidence that the MTR assumption restricting P (Y1 > Y0) ≥ 0.95

may have substantial identifying power when estimating the other parameters in Table 1.4. This is explored

further in Appendix 1.E.

Bounds on the conditional probability of transitioning to an average percentile rank above the median as

a result of the program are also found to be wide and uninformative. For the grade 3 outcomes the bounds

on P (Y1 > Median(Y )|Y0 ≤ Median(Y )) range from [0.17, 1.00] and for the grade 8 outcomes it ranges

from [0.07, 1.00]. An extended analysis for this parameter is also provided in Appendix 1.E.

Bounds on the marginal probabilities P (Y0 ≤ Median(Y )) and P (Y1 > Median(Y )) are found to be

informative, taking values respectively in the intervals [0.53, 0.53] and [0.53, 0.69] for the grade 3 outcomes,

and [0.52, 0.52] and [0.48, 0.65] for the grade 8 outcomes. In particular, note that the value of P (Y0 ≤
22In particular, the two-stage least squares estimates in Krueger (1999) indicate a reduction in class size of 10 students is

associated with a 7 to 9 point increase in a student’s average percentile ranking. Furthermore, Krueger and Whitmore (2001)
find positive effects on middle school test scores, especially for students qualifying for the free lunch program in elementary
school.

23This is because the MTR assumption directly restricts the voting criterion parameter, whereas it only indirectly restricts
the other parameters.
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Median(Y )) is nearly point-identified in this application. Upon further investigation this is found to be a

result of the fact the estimated value of P (D = 1|Z = 0) is nearly zero in our sample.24

Bounds on the correlation coefficient are found to be marginally informative, ranging in [0.02, 0.5] for

the grade 3 outcomes and [0.09, 0.50] for the grade 8 outcomes. These positive and informative bounds

are consistent with the intuition that the students who achieved a high percentile rank in small class sizes

were also likely to have achieved a high percentile rank in regular class sizes. However, sensitivity analysis

in Appendix 1.E shows identification power for this parameter is likely coming from our MTR assumption

P (Y1 > Y0) ≥ 0.95.

Finally, we consider bounds on the standard deviation of treatment effects. For the grade 3 outcomes we

find a range of [2.07, 28.12] percentage points, and for the grade 8 outcomes we find a range of [1.13, 27.52]

percentage points. This indicates that the data is consistent with a large range of variation of treatment

effects, including values that are consistent with a significant amount of heterogeneity in the impact of the

program.

For researchers interested in the sensitivity of the bounds to the MTR assumption P (Y1 > Y0) ≥ 0.95,

Appendix 1.E contains bounding results when this assumption is relaxed to P (Y1 > Y0) ≥ 0.5. As expected,

the bounds on some parameters become less informative. Whether the bounds are informative in a particular

application—and under which assumptions the bounds are informative—depends on the empirical context,

and not on the method proposed in this chapter (which always delivers sharp bounds). More informative

bounds can always be obtained by imposing additional assumptions, or additional restrictions on the selection

mechanism, both of which can be accomplished under minor modifications of the presented method.

Overall the results are consistent with previous studies on the effects of the Tennessee STAR program,

although they suggest that the conclusions on the effect of the program may be sensitive to the maintained

assumptions. The application shows how the method in this chapter can be used to identify bounds on

causal parameters—specifically parameters that depend on the joint distribution—that might be used as a

robustness check in an analysis by demonstrating the (lack of) sensitivity of identification to the maintained

assumptions.

1.5 Conclusion

This chapter presents results on the identification and estimation of bounds on continuous functionals of

the joint distribution of potential outcomes. For many interesting functionals the bounding problem is a

linear program. The results were achieved by using the characterization of the identified set via Artstein’s

Theorem from random set theory. In addition, alternative characterizations of the optimization problems

were discussed that allow for efficient computation. The results extend easily to accommodate additional

modelling assumptions, such as the monotone treatment response, and monotone instrumental variables

assumptions (see the discussion in Appendix 1.C). Finally, we show an application of the results to the

Tennessee STAR experimental data.

24For intuition, note that the value of P (Y0 ≤ y) can be decomposed as:

P (Y0 ≤ y) = P (Y0 ≤ y|Z = 0)

= P (Y ≤ y|D = 0, Z = 0)P (D = 0|Z = 0) + P (Y0 ≤ y|D = 1, Z = 0)P (D = 1|Z = 0),

where the first equality follows from independence. Partial identification of P (Y0 ≤ y) results from lack of knowledge of
P (Y0 ≤ y|D = 1, Z = 0). Ignoring the MTR assumption, when P (D = 1|Z = 0) ≈ 0 the second (unknown) term in the
previous display is negligible, implying the identified set for P (Y0 ≤ y) has a small length.
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Appendix 1.A Mathematical Preliminaries

This appendix reviews concepts from the theory of random sets that may assist the reader. Let X be a

bounded subset of the d−dimensional euclidean space Rd and let F denote the set of closed sets on X and

K denote the set of compact sets on X .25 Fix some probability space (Ω,A, P ), and let X : Ω→ F .

Definition 1.A.1 (Random Closed Set (Molchanov (2005), pg. 1)). The map X : Ω→ F is called a random

closed set if, for every compact set A in X :

{ω : X(ω) ∩A 6= ∅} ∈ A.

Definition 1.A.2 (Capacity Functional (Molchanov (2005), pg. 4)). A functional T : K → [0, 1] given by

T (A) = P (ω : X(ω) ∩A 6= ∅), A ∈ K,

is called the capacity functional of the random set X.

Since the random sets X and X′ have realizations in the compact sets in Rd, we have that X and X′ are

identically distributed (denoted X
d∼ X′) if and only if P (X ∩ A 6= ∅) = P (X′ ∩ A 6= ∅) for all A ∈ K (i.e.

their capacity functionals agree for all compact sets). Note that, although T (∅) = 0 and T (U) = 1, unlike a

typical probability measure the capacity functional T is generally non-additive. In particular, for two sets

A1, A2 ∈ 2U such that A1 ∩A2 = ∅ we may have:

{X ∩A1 6= ∅} ∩ {X ∩A2 6= ∅} 6= ∅,

which implies

T (A1 ∪A2) < T (A1) + T (A2).

An important concept in random set theory is the idea of a selection of a random set, which can be

intuitively understood as a random variable with realizations within the random set:

Definition 1.A.3 (Selection, Molchanov (2005) pg. 26). A random variable X : Ω → X is called a

(measurable) selection of the random set X if X(ω) ∈ X(ω), P -a.s. The family of all selections of X is

denoted sel(X).

In the context of this chapter, we are particularly interested in the measurable selections U from the

random set G−1(W ). With this terminology, the following Theorem leads directly to the key identification

results in this chapter:

Theorem (Artstein’s Theorem). Let X be a random variable with distribution µ and let X be a random set

with distribution ν. Then there exists a random variable X ′ and a random set X′ with X ′
d∼ X and X′

d∼ X

such that X ′ ∈ sel(X′) if and only if:

µ(X ∈ A) ≤ ν(X ∩A 6= ∅), ∀A ∈ K. (1.19)

25Note that since we consider a bounded subset X ⊂ Rd, all closed sets on X are compact.
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Appendix 1.B Core Determining Classes for Treatment Effects

The Exact Core Determining Class

Luo and Wang (2016) define the exact core determining class as the smallest core determining class. This

fact motivates the following definition from Luo and Wang (2016):

Definition 1.B.1 (Luo and Wang (2016)). The exact core determining class S∗ is the collection of all

subsets A ∈ 2U and A 6= U such that

P ∗U (A) > PW (G−1(Y,D) ∩A 6= ∅),

where

P ∗U (A) := max{PU (A)|PU (A′) ≤ PW (G−1(Y,D) ∩A′ 6= ∅) ∀A′ ∈ 2U , A′ 6= A; PU (U) = 1}.

As the results in this appendix show, thinking about the exact core determining class in terms of non-

redundant linear inequality constraints is convenient. To facilitate comparison with results that appear later,

we restate the technical result of Luo and Wang (2016) here. First, a definition of important set collections

that can be used to characterize the exact core determining class.

Definition 1.B.2 (Luo and Wang (2016)). Let Su, Sw and S−1
w be the collections of sets with the following

properties:

(a) Su is the collection of all non-empty subsets A ∈ 2U , A 6= U , such that

(i) A is self-connected.26

(ii) There exists no u ∈ U such that u /∈ A and G(u) ⊂ G(A).

(b) Sw is the collection of all non-empty subsets B ∈ 2W , B 6=W, such that

(i) B is self-connected.

(ii) There exists no w ∈ W such that w /∈ B and G−1(w) ⊂ G−1(B).

(c) S−1
w is the collection of A ⊂ U and A 6= U such that there exists B ⊂ Sw such that A = G−1(B)c.

Note that condition (i) in the definition of both Su and Sw corresponds to the redundancy condition

suggested by Chesher and Rosen (2017a). Condition (ii) in the definition of both Su and Sw is novel to

the paper by Luo and Wang (2016). Intuitively, Su and Sw represent the collection of non-redundant sets

when Artstein’s inequalities are defined on the unobservables and observables, respectively. Furthermore,

the collection S−1
w is the “reflection” in the space of unobservables of the non-redundant sets in the space of

observables. The main result in Luo and Wang (2016) follows.

Theorem (Luo and Wang (2016)). Assume that the bipartite graph represented by G = (W,U ,G) is con-

nected; that is, for every A1, A2 ⊂ U such that A1, A2 6= ∅ and A1 ∪A2 = U we have G(A1)∩G(A2) 6= ∅. If

the measure PW on W is non-degenerate, i.e. PW (W = w) is non-zero for all w ∈ W, then the exact core

determining class is given by:

S∗ = Su ∩ S−1
w .

26A set A is self-connected if for every A1, A2 ⊂ A such that A1, A2 6= ∅ and A1 ∪A2 = A we have G(A1) ∩G(A2) 6= ∅.
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Using this result, Luo and Wang (2016) provide an algorithm to compute the exact core determining

class for a general econometric model and provide some Monte Carlo evidence showing that the exact core

determining class is able to reduce the number of inequalities significantly.27 Intuitively, to find the core

determining class we must:

(i) Decide which sets A ∈ 2U satisfy the conditions necessary to belong to Su.

(ii) Decide which sets A′ ∈ 2W satisfy the conditions necessary to belong to Sw.

(iii) Decide which sets A ∈ 2U satisfy the conditions necessary to belong to S−1
w .

(iv) Intersect the sets Su and S−1
w .

Since the number of sets in 2U and 2W can be prohibitively large, even an efficient algorithm can take an

unreasonable amount of time to characterize the exact core determining class.

Note that the POM provides a very specific structure to the correspondence G. The structure of the

correspondence G in the POM is best illustrated when looking at the bipartite graph G = (W,U ,G). Some

appealing properties of the general bipartite graph G defined by the POM include:

(i) Part U of the graph G has exactly |Y||D| nodes with degree |D|.

(ii) Part W of the graph G has exactly |Y||D| nodes with degree |Y||D|−1.

(iii) For u1 6= u2, we have G(u1) 6= G(u2). Similarly, for w1 6= w2, we have G−1(w1) 6= G−1(w2).

(iv) G is connected.

Using the properties of the graph G, it is possible to characterize the properties of the sets in the exact

core determining class for the POM. Results on the precise nature of sets in the exact core determining class

in the POM are given in Lemmas 1.B.1, 1.B.2 and 1.B.3 below.

Lemma 1.B.1. For the POM, A ∈ Su and |A| ≥ 2 if and only if all singletons that comprise A have exactly

|D| − 1 elements in common.

Lemma 1.B.2. For the POM we have

(a) G can be partitioned into |D| disjoint subgraphs G1,G2, . . . ,G|D| with Gk = (Wk,U ,G), where

(i) Wi ∩Wj = ∅ for all i 6= j.

(ii) G−1(w) ∩G−1(w′) 6= ∅ for any pair (w,w′) with w ∈ Wi, w
′ ∈ Wj, i 6= j.

(iii) G−1(w) ∩G−1(w′) = ∅ for any w,w′ ∈ Wk.

(iv) G−1(Wk) = U for every k.

(b) B ∈ Sw if and only if:

(i) B 6⊆ Wk for any k if |B| ≥ 2.

(ii) Wk 6⊆ B for any k.

Lemma 1.B.3. If |D| = 2 and |D| < |Y|, then S−1
w contains all sets A ⊂ Su with |A| ≤ |Y| − 1. Otherwise,

Su ⊂ S−1
w .

27Luo and Wang (2017) mention that example 3 in Luo and Wang (2016) is able to eliminate 98.56% of the inequalities in a
15× 25 bipartite graph.
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To summarize, Lemmas 1.B.1 and 1.B.3 provide a complete characterization of the type of sets in the

exact core determining class, and Lemma 1.B.2 provides information on the structure of the POM bipartite

graph. Further intuition on the interpretation of sets selected the exact core determining class is provided

in the main paper. These Lemmas can then be used to prove the following result, which was presented in

the main text.

Theorem 1.B.1. Suppose that the distribution PW is non-degenerate:

1. In the POM there are exactly: |Y||D| if r = 1,

|Y||D|−1|D| ·
(|Y|
r

)
if r ≥ 2,

r-element sets in the collection Su.

2. In the POM there are exactly:

|D|∑
`=2

(
|D|
`

) ∑
v∈A(r,|Y|,`)

∏̀
i=1

(
|Y|
vi

) ,

r-element sets in the collection Sw, where

A(r, |Y|, `) =

{
(v1, v2, . . . , v`) ∈ N` :

∑
i

vi = r, 1 ≤ vi ≤ |Y| − 1 ∀i

}
.

3. In the POM there are|Y||D| +
∑|Y|
r=2 |Y||D|−1|D|

(|Y|
r

)
− |Y||D|, if |D| = 2 and |Y| > |D|,

|Y||D| +
∑|Y|
r=2 |Y||D|−1|D|

(|Y|
r

)
, otherwise,

sets in the exact core determining class.

Appendix 1.C Conditional Probability/Linear Programming

This Appendix gives an example of how to implement the optimization problems suggested in Theorem 1.

Suppose for simplicity that we are in the binary outcome, binary treatment case. Let qij = P (Y0 = i, Y1 = j),

and suppose we wish to bound the parameter

P (Y1 = 1|Y0 = 0) =
q01

q00 + q01
.

It is possible to show that we can bound this parameter using a linear program. First note that we can write

the dual problem to Artstein’s inequalities (discussed in Section 3) as:
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
1 1 0 0 0 0 0 0
0 0 0 0 1 0 1 0
0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 1


︸ ︷︷ ︸

Aπ



π00,0

π01,0

π10,0

π11,0

π00,1

π01,1

π10,1

π11,1


︸ ︷︷ ︸

π

=


p00

p01

p10

p11


︸ ︷︷ ︸

p

,

which trivially impose only linear constraints. Also recall that we can write:

q00 = π00,0 + π00,1,

q01 = π01,0 + π01,1,

q10 = π10,0 + π10,1,

q11 = π11,0 + π11,1.

Then the optimization problem is:

max
π

π01,0 + π01,1

π00,0 + π00,1 + π01,0 + π01,1
, s.t.

{
Aπ · π = p,

0 4 π 4 1.
(1.20)

To write this as a linear programming problem, define

r =
1

π00,0 + π00,1 + π01,0 + π01,1
, π̃ =



π00,0/(π00,0 + π00,1 + π01,0 + π01,1)
π01,0/(π00,0 + π00,1 + π01,0 + π01,1)
π10,0/(π00,0 + π00,1 + π01,0 + π01,1)
π11,0/(π00,0 + π00,1 + π01,0 + π01,1)
π00,1/(π00,0 + π00,1 + π01,0 + π01,1)
π01,1/(π00,0 + π00,1 + π01,0 + π01,1)
π10,1/(π00,0 + π00,1 + π01,0 + π01,1)
π11,1/(π00,0 + π00,1 + π01,0 + π01,1)


,

c =



0
1
0
0
0
1
0
0


, d1 =



1
1
0
0
1
1
0
0


, d2 =



1
1
1
1
1
1
1
1


.

Then the problem above can be re-written as:

max
π̃,r

c′ · π̃, s.t.



Aπ · π̃ − p · r = 0,

d1 · π̃ = 1,

d2 · π̃ − r = 0,

0 4 π̃ 4 1,

r ≥ 1.

(1.21)

This can be seen by replacing the objective function in (1.20) with the equivalent objective function in (1.21),

by multiplying both sides of the constraint Aπ · π = p in (1.20) by the variable r and rearranging, and by
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imposing constraints ensuring that the conditional probability measure is a proper probability measure,

namely:

d1 · π̃ = 1 =⇒
∑
j

P (Y1 = yj |Y0 = 0) = 1,

d2 · π̃ − r = 0 =⇒
∑
i

∑
j

P (Y0 = yi, Y1 = yj) = 1,

0 4 π̃ 4 1 and r ≥ 0 =⇒ 0 ≤ P (Y0 = yi, Y1 = yj) ≤ 1 ∀i, j.

Alternatively, we could write the same problem more compactly as

max
q̃r

c′r · q̃r s.t.

{
Ar · q̃r = ar,

bl 4 q̃r 4 bu,
(1.22)

where q̃′r = (π̃′, r)′ and where

Ar =

Aπ −p
d′1 0
d′2 −1

 , ar =

0
1
0

 ,

cr =



0
1
0
0
0
1
0
0
0


, bl =



0
0
0
0
0
0
0
0
1


, bu =



1
1
1
1
1
1
1
1
∞


.

The problem (1.22) is now in a form amenable for implementation in common linear programming software;

for example, Matlab and Gurobi. It is also easily generalized to cases beyond binary treatment and binary

outcome.

1.C.1 Introducing Additional Constraints

Imposing additional assumptions on the unobserved probability measure PU in an analytic framework re-

quires a new proposed identified set and corresponding proof of sharpness. In contrast, additional assump-

tions can be imposed easily on PU in the computational framework. In addition, in many cases additional

assumptions can be included as linear constraints in PU , which are convenient from a computational point

of view.

Additional constraints are often useful when the identified set for a parameter of interest is wide, as

introducing constraints on PU can result in a more informative identified set. These additional constraints

allow a researcher to trade-off the length of the bounds with the credibility of the maintained assumptions.

Perhaps the most well-known assumptions used in the partial identification of treatment effects are the

monotone treatment response (MTR) assumption and the monotone instrumental variables assumption
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(MIV), which are outlined in Manski and Pepper (2000) and discussed in Manski (2003).

Definition 1.C.1 (MTR, Manski and Pepper (2000)). Let Yd be an ordered set. Then the MTR assumption

is satisfied if d′ ≥ d =⇒ P (Yd′ ≥ Yd) = 1.

I.e. the MTR assumption implies that the potential outcomes are monotone in the treatment, and can

be useful when a researcher has some strong a priori evidence that a particular treatment is effective at

increasing (decreasing) an outcome variable Y for all individuals. It is also possible to order potential

outcomes with respect to a variable other than treatment status, which motivates the MIV assumption:

Definition 1.C.2 (MIV, Manski and Pepper (2000)). Suppose that Z is an ordered set. The covariate Z

is a monotone instrumental variable if for each treatment d ∈ Yd, we have that z′ ≥ z =⇒ E[Yd|Z = z′] ≥

E[Yd|Z = z].

Note that the MTR and MIV assumptions can be written as constraints on the unobserved probability

measure PU . Indeed, it has been shown by Demuynck (2015), Lafférs (2013a, 2015) and Torgovitsky (2016)

that these assumptions, and versions thereof, can be written as linear constraints on PU (which makes

them especially amenable to inclusion in linear programs). Since the set P†U is still convex and closed

under these constraints, estimation using Artstein’s inequalities is consistent by Theorem 2. The MTR

and MIV assumptions presented are examples of additional assumptions that can be imposed to obtain a

more informative analysis, although there are many other assumptions that might also be imposed without

affecting any of the previous results.

Appendix 1.D Consistency and Inference

In this section we show the conditions under which the optimization-based bounding procedure is consistent,

and we repeat some discussion given in the main paper. Consistency is presented without an instrument

for simplicity, but the result also holds when a instrument with finite support is available. Finally, the

proof of consistency is given for the case when PU is defined by Artstein’s inequalities rather than the dual

approach, although it is applicable to both approaches since both approaches give numerically identical

characterizations of PU .

Consider the usual empirical measure:

Pn(A) :=
1

n

n∑
i=1

1{(Yi, Di) ∈ A},

where {(Yi, Di)}ni=1 is an i.i.d. sample from PW . Now define the set:

PU (Pn) := {PU ∈ P†U : PU (A) ≤ Pn(G−1(Y,D) ∩A 6= ∅) for all A ∈ 2U},
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or equivalently:

PU (Pn) := {PU ∈ P†U : ∃π ∈MG(Pn, PU )}.

Consistency in the estimation of sets is usually defined in terms of the Hausdorff distance dH , which fur-

nishes a metric on the space of non-empty compact subsets of Rd.28 Here we are interested in establishing

consistency with respect to the Hausdorff metric of the set:

Θf (Pn) = [f `(Pn), fu(Pn)] with f `(Pn) = sup
PU∈PU (Pn)

f(PU ), fu(Pn) = inf
PU∈PU (Pn)

f(PU ), (1.23)

for the set:

Θf (PW ) = [f `(PW ), fu(PW )] with f `(PW ) = sup
PU∈PU

f(PU ), fu(PW ) = inf
PU∈PU

f(PU ). (1.24)

Consistency is given in the following Theorem, which is also presented in the main text:

Theorem. Fix any continuous functional f : PU → R. Suppose that (a) P†U is restricted only through linear

(in)equality constraints; (b) the Jacobian of the linear equality constraints defining PU (if any) has full row

rank; (c) {Wi}ni=1 is i.i.d. from some probability measure PW with finite support; and (d) int (PU ) 6= ∅.

Then Θf (Pn)
p→ Θf (PW ) in the Hausdorff metric.

Since f is a continuous functional, consistency follows if we can show that PU (Pn)
p→ PU in the Hausdorff

metric (see the proof for a detailed discussion). To begin the proof, we first show PU (Pn) can be written as

the set minimizer of an appropriately defined criterion function, as well-known consistency results exist for

problems of this kind (see in particular Chernozhukov et al. (2007a), Yildiz (2012), Menzel (2014) and Shi

and Shum (2015)). The proof then follows by verifying that the problem fits into the framework of Shi and

Shum (2015), and by verifying the conditions required for consistency presented in their paper.

Condition (a) in the Theorem is made primarily for simplicity, but also since it covers all the cases

discussed in this chapter. It is possible to relax condition (a), although it will then generally be harder

to verify condition (b) if the linear equality constraints become non-linear equality constraints, since the

gradients of these equality constraints would then depend on the parameter PU . Condition (b) in the

Theorem is required to apply the consistency result of Shi and Shum (2015), and condition (c) is standard.

Condition (d) is worth some discussion. Note that Theorem 2 shows that estimation of bounds on any

continuous functional of the joint distribution can be completed using Artstein’s inequalities without the

28The Hausdorff distance for any two sets A and B as:

dH(A,B) = max

{
sup
a∈A

inf
b∈B
||a− b||, sup

b∈B
inf
a∈A
||a− b||

}
.

30



www.manaraa.com

need for a tuning parameter. However, this is done at the cost of ruling out point identification through

assumption (d). While point identification is a knife-edge case under all assumptions considered in this

chapter, some researchers may feel assumption (d) is too restrictive. If this is the case, researchers can add a

slackness term that drifts towards zero—say cn—to each of the inequalities defining the set PU , and Theorem

2 can then be applied with assumption (d) replaced with the assumption that PU 6= ∅. A general rule for

selecting the slackness is that it should dominate relative to sampling error; thus, a possible choice for the

slackness is given by cn =
√

log(n)/n. Introducing such a slackness term will cause any estimated identified

sets to have slightly larger length, although any difference will be negligible for large n.

Appendix 1.E Application Robustness Exercise

Figure 1.3 shows plots of P (Y1 > yq|Y0 ≤ y0.5) and P (Y1 > y0.5|Y0 ≤ yq) against yq, where yq is the qth

quantile of the observed grade 3 ranks. The figures emphasize that, for the most part, the bounds on the

conditional probability for the Tennessee STAR application are wide and uninformative. In contrast, Figure

1.4 shows informative plots of the joint distribution P (Y1 > yq, Y0 ≤ y0.5) and P (Y1 > y0.5, Y0 ≤ yq) against

yq.
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Figure 1.3: Bounds on the conditional probability (Grade 3, Bins=35, MTR assumption P (Y1 > Y0) ≥ 0.95).

Table 1.5 shows bounds for the parameters of interest in the Tennessee STAR experiment when the MTR

condition is relaxed from P (Y1 > Y0) ≥ 0.95 to the MTR condition P (Y1 > Y0) ≥ 0.5. As discussed in the

main text, the bounds on some of the parameters—such as the bounds on P (Y1 > Median|Y0 ≤ Median),

P (Y0 ≤ Median),
√
V ar(Y0))—are almost completely unaffected by the relaxing of the assumption. How-

ever, bounds on other parameters—especially E[Y1 − Y0] and Corr(Y0, Y1)—become uninformative when

the assumption is relaxed. However, the reader is encouraged to keep in mind that under either condi-
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Figure 1.4: Bounds on the joint probability (Grade 3, Bins=35, MTR assumption P (Y1 > Y0) ≥ 0.95).

tion (P (Y1 > Y0) ≥ 0.95 or P (Y1 > Y0) ≥ 0.5) the bounds are sharp in the sense that they exhaust all

the information provided by the data under the maintained assumptions. Thus, whether the bounds are

informative—and under which assumptions the bounds are informative—depends always on the empirical

context, and not on the method proposed in this chapter (which always delivers sharp bounds).
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Table 1.5: Bounds on School Achievement from the Tennessee STAR Experiment Assuming P (Y1 > Y0) ≥ 0.5

Y = Grade 3 percentile rank Y = Grade 8 percentile rank
D = Small class K-3 D = Small class K-3

Lower Bound Upper Bound Lower Bound Upper Bound

P (Y0 ≤Median(Y ), Y1 > Median(Y )) :† Bins=25 0.08 0.53 0.04 0.52
Bins=30 0.08 0.53 0.04 0.52
Bins=35 0.09 0.53 0.04 0.52

E[Y1 − Y0]: Bins=25 -6.26 19.27 -8.51 17.03
Bins=30 -6.58 19.13 -9.39 16.32
Bins=35 -7.52 18.32 -9.57 16.27

P (Y1 > Y0) :∗ Bins=25 0.11 0.97 0.05 0.97
Bins=30 0.11 0.98 0.05 0.98
Bins=35 0.11 0.98 0.05 0.98

P (Y1 > Median(Y )|Y0 ≤Median(Y )) :† Bins=25 0.14 0.97 0.07 1.00
Bins=30 0.14 0.96 0.07 1.00
Bins=35 0.17 1.00 0.07 1.00

P (Y0 ≤Median(Y )) :† Bins=25 0.55 0.55 0.52 0.52
Bins=30 0.55 0.55 0.52 0.52
Bins=35 0.53 0.53 0.52 0.52

P (Y1 > Median(Y )) :† Bins=25 0.40 0.66 0.39 0.66
Bins=30 0.39 0.66 0.39 0.65
Bins=35 0.42 0.69 0.39 0.65

Corr(Y0, Y1): Bins=25 -0.50 0.50 -0.50 0.50
Bins=30 -0.50 0.50 -0.50 0.50
Bins=35 -0.50 0.50 -0.50 0.50√

V ar(Y1 − Y0): Bins=25 2.37 43.90 0.84 42.75
Bins=30 2.43 44.57 0.55 43.02
Bins=35 2.07 43.89 0.89 45.26

†: Recall that Median(Y) is the median of the observed outcome, but not necessarily the median of Y0 or Y1.
∗: The parameter P (Y1 > Y0) is the only parameter estimated without the MTR assumption P (Y1 > Y0) ≥ 0.95.
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Appendix 1.F Proofs

Proof of Theorem 1. Recall our probability space is (Ω,A, P ). Note since U is finite, then so is G−1(Y,D)

since G−1 maps within U . Since {(y, d) : G−1(y, d) ∩ A 6= ∅} ∈ 2W for all A ∈ 2U , G−1(Y,D) is a random

closed set. By Artstein’s Theorem we have that for the random set G−1(Y,D) and for the element U ∈ U ,

there exists a random set [G′]−1(Y,D) and a random variable U ′ ∈ U such that [G′]−1(Y,D)
d∼ G−1(Y,D)

and U ′
d∼ U and U ′ ∈ [G′]−1(Y,D) a.s. if and only if

PU (U ∈ A) ≤ PW (G−1(Y,D) ∩A 6= ∅), ∀A ∈ 2U .

Thus, the collection PU provides a sharp characterization of the set of all joint distributions PU of U ∈ U

consistent with the observed distribution PW . If P†U is convex then PU is also convex, as it restricts P†U only

via the linear inequality constraints implied by Artstein’s Theorem. The result than follows from the proof

of proposition 1 in Torgovitsky (2016). In particular, because U is finite with dimension dU , we have that

PU ⊂ RdU is compact. Finally, the image of a continuous functional over a non-empty compact and convex

set PU ⊂ RdU is a non-empty interval with the end points defined as in equation (9). �

Proof of Lemma 1.B.1. For notational simplicity, let M := |Y| and K := |D|.

First consider the reverse; i.e. suppose that A is a union of r singletons that have exactly K−1 elements in

common. Note that for every pair of singletons u, u′ ∈ A, we haveG(u)∩G(u′) 6= ∅ andG(u) 6= G(u′). Thus,

for any partition A1, A2 of A we always have G(A1) ∩G(A2) 6= ∅. Next, suppose by way of contradiction

that there exists a u /∈ A such that G(u) ⊂ G(A). Since G(u) ⊂ G(A), it must be that u must have the

same K − 1 elements in common with all members of A (otherwise it cannot map within G(A)). However,

since u /∈ A it must be that u has one element uncommon to all members of A. But then G(u) 6⊂ G(A),

which gives the desired contradiction and completes the proof of the reverse direction.

Now consider the forward direction; i.e. suppose that A ∈ Su and |A| = r ≥ 2, and proceed by inducting

on r. First consider the case when r = 2. For any A ∈ Su with |A| = 2, take the singletons u1, u2 that

comprise A (i.e. the singletons such that u1 ∪ u2 = A). If u1 and u2 share more than K − 1 elements then

they are the same vector. It is also clear that u1 and u2 must share at least one element, otherwise condition

(a)(i) in Definition 1.B.2 is not satisfied. Thus, suppose u1 and u2 share 1 ≤ k < K − 1 elements. Without

loss of generality, suppose that they share the first k elements, so that we can write the vectors u1 and u2

as:

u1 = (y1, y2, . . . , yk, y1(k+1), y1(k+2), . . . , y1K),
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u2 = (y1, y2, . . . , yk, y2(k+1), y2(k+2), . . . , y2K).

Now consider the vector u3 given by:

u3 = (y1, y2, . . . , yk, y1(k+1), y1(k+2), . . . , y1(K−1), y2K).

I.e. u3 is the vector that shares the same first k elements with both u1 and u2, shares the next (K−1)−(k+1)

elements with vector u1, and shares the last element with vector u2. Clearly this vector u3 exists, u3 /∈ A

and G(u) ⊂ G(u1 ∪ u2), contradicting the fact that A = u1 ∪ u2 is in Su. Thus we conclude that the claim

holds for the base case of r = 2.

Now suppose the claim holds for r = `. Then we know that any A ∈ Su such that |A| = ` must be

comprised of singletons u1, u2, . . . , u` that share K − 1 elements. Without loss of generality suppose that

these are the first K − 1 elements so that we can write:

u1 = (y1, y2, . . . , yK−1, y1K) ,

u2 = (y1, y2, . . . , yK−1, y2K) ,

...

u` = (y1, y2, . . . , yK−1, y`K) ,

where yiK 6= yjK for any i 6= j. Now consider a set A′ ∈ Su with |A′| = ` + 1. Note that any such set

can be constructed by adding a singleton u to a set A ∈ Su where |A| = `, so that A′ = A ∪ u for some

u ∈ U . Thus, suppose by way of contradiction that there exists a u`+1 ∈ U such that for some A ∈ Su we

have A′ = A ∪ u`+1 ∈ Su, but that u`+1 does not have K − 1 elements in common with every vector in A.

Clearly u`+1 cannot have more than K − 1 elements in common with any vector in A, since then it is the

same as one vector in A. Thus it must be that u`+1 has less than K − 1 elements in common with at least

one vector in A. Also note that clearly u`+1 has at least one element in common with one vector ui ∈ A

(otherwise A does not satisfy condition 1 in Definition 1.B.2). Suppose without loss of generality that this

vector is ui = u1; this simplification is only to reduce the level of abstraction. Now consider two cases:

1. u`+1 and u1 share the element y1K : the fact they share y1K implies it must be that they do not share

at least one element yj from one of the elements y0, y1, . . . , yK−1 (otherwise they are the same vector).

But then there exists a vector u ∈ U such that u is the same as vector u`+1 except with the last element

of u`+1 replaced with y2K . Then u /∈ A′ and G(u) ⊂ G(A′), so that A′ is redundant.

2. u`+1 and u1 share at least one of the elements y0, y1, . . . , yK−1: Note that if these elements share y1K

then we are in the previous case, since this implies that they do not share at least one element in
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y0, y1, . . . , yK−1. Thus, suppose they do not share y1K . If they share all other elements, then u`+1

shares exactly K − 1 elements with all vectors in A, which is a contradiction. Thus, there must exist

at least one element in y0, y1, . . . , yK−1 that they do not share. But note there exists a u ∈ U that is

the same as u1 except that its last element is replaced with the last element of u`+1. But then u /∈ A′

and G(u) ⊂ G(A′), so that A′ is redundant.

We conclude that u`+1 must have the same elements in common with u1, u2, . . . , u`, which shows the inductive

step and concludes the proof. �

Proof of Lemma 1.B.2. For notational simplicity, let M := |Y| and K := |D|.

(a) First note that for any (y, d), (y′, d) ∈ W we have G−1(y, d) ∩G−1(y′, d) = ∅. Thus we can divide the

graph G into K disjoint subgraphs G1,G2, . . . ,GK where Gk = (Wk,U ,G) and where

Wk = {(y, d) : d = k}.

By construction we have Wi ∩ Wj = ∅ for all i 6= j, and G−1(y, d) ∩G−1(y′, d) = ∅ for any y 6= y′.

Also note that the vectors of the form (y, d) map to vectors of the form (·, ·, . . . , ·, y, ·, . . . , ·), with y in

the dth position. Thus, collecting such vectors for all values of y we obtain the collection U , so that

we can conclude G−1(Wk) = U . Finally consider the pair (v, v′) with v ∈ Wi, v
′ ∈ Wj , i 6= j. v and

v′ can be written as v = (y, i) and v′ = (y′, j). But since v is mapped to the set of vectors of the form

(·, ·, . . . , ·, y, ·, . . . , ·), with y in the ith position, and since v′ is mapped to the set of vectors of the form

(·, ·, . . . , ·, y′, ·, . . . , ·), with y′ in the jth position, it is clear that G−1(v) ∩G−1(v′) 6= ∅ when i 6= j.

(b) For the forward direction note that by property (iii) of collections Wk proved in part (a), (i) is implied

if B is self-connected. In addition, note that G−1(Wk) = U for every k, so that if (ii) did not hold

for B ∈ Sw we would have G−1(B) = U . But then if B 6= W we can always find a v /∈ B such that

G−1(v) ⊂ G−1(B), contradicting the fact that B ∈ Sw.

For the reverse, note first that since G−1(y, d) ∩ G−1(y′, d) = ∅ for any y 6= y′, and G−1(y, d) ∩

G−1(y′, d′) 6= ∅ for any d 6= d′, condition (i) is sufficient to ensure B is self-connected. Next, suppose

by way of contradiction that there exists a collection of singletons B = {y1, . . . , yr} ⊂ W satisfying

conditions (i) and (ii), but that there also exists a v ∈ W such that v /∈ B and G−1(v) ⊂ G−1(B). Note

that v can be written as v = (y, d), and maps to the set of vectors of the form (·, ·, . . . , ·, y, ·, . . . , ·), with

y in the dth position. Thus G−1(B) must contain all the vectors of this form if G−1(v) ⊂ G−1(B).

But since B does not contain v, this is only possible if Wk ⊆ B for some k, contradicting the fact that

condition (ii) is satisfied.
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�

Proof of Lemma 1.B.3. For notational simplicity, let M := |Y| and K := |D|. Consider any A ∈ Su with

|A| = r. We want to show there exists a B ∈ Sw such that A = G−1(B)c, or equivalently, Ac = G−1(B).

Since A ∈ Su, by Lemma 1.B.1 the singletons that comprise A have exactly K − 1 elements in common.

Suppose without loss of generality that the uncommon element is the first element, and suppose the K − 1

common elements are y1, y1, . . . , y1. Then every ui ∈ A can be written

ui = (vi, y1, y1, . . . , y1),

for some vi ∈ {y1, y2, . . . , yM}, and where vi 6= vj for i 6= j. Given our A ∈ Su described above, Ac can be

represented by

Ac = {{ui}ri=1 : ui = (vi, y1, y1, . . . , y1), vi ∈ {y1, y2, . . . , yM}, i = 1, . . . , r}c

=

(
M⋃

i1=r+1

M⋃
i2=1

M⋃
i3=1

. . .

M⋃
iK=1

(vi1 , yi2 , yi3 , . . . , yiK )

)

∪

(
M⋃
i1=1

M⋃
i2=2

M⋃
i3=1

. . .

M⋃
iK=1

(vi1 , yi2 , yi3 , . . . , yiK )

)
∪ . . .

. . . ∪

(
M⋃
i1=1

M⋃
i2=1

M⋃
i3=1

. . .

M⋃
iK=2

(vi1 , yi2 , yi3 , . . . , yiK )

)

=

(
M⋃

i1=r+1

G−1(vi1 , 1)

)
∪

 M⋃
j=2

K⋃
k=2

G−1(yj , k)



= G−1

 M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj , k)

 .

Now set

B =

M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj , k),

and consider the follow cases:
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� M > K,K = 2: We claim B ∈ Sw only if 1 ≤ r ≤M − 1. Indeed, if r ≥ |Y| then

B =

M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj , k) =

M⋃
j=2

K⋃
k=2

(yj , k) =

M⋃
j=2

(yj , 2),

so that clearly B ⊆ W2 and so B /∈ Sw. However, if 1 ≤ r ≤M − 1 then

B =

M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj , k) =

M⋃
i1=r+1

M⋃
j=2

(vi1 , 1) ∪ (yj , 2),

so B 6⊆ Wk for any k and Wk 6⊆ B for any k, which proves B ∈ Sw by Lemma 1.B.2.

� K ≥ 3: We claim that B ∈ Sw with no additional conditions. This follows from the fact that the

union:

M⋃
i1=r+1

M⋃
j=2

K⋃
k=2

(vi1 , 1) ∪ (yj , k),

contains elements from W2, . . . ,Wk regardless of the magnitude of r, and Wk 6⊆ B for any k. Thus by

Lemma 1.B.2 we have that B ∈ Sw.

Thus we conclude that if K = 2 and K < M , then for any A ∈ Sw with |A| ≤ M − 1, ∃B ∈ Sw such

that Ac = G−1(B), so that A ∈ S−1
w . Otherwise, if K > 2, then for any A ∈ Sw, ∃B ∈ Sw such that

Ac = G−1(B), so that A ∈ S−1
w . This completes the proof. �

Proof of Theorem 1.B.1. For notational simplicity, let M := |Y| and K := |D|.

1. Note that every singleton trivially satisfies the conditions in Definition 1.B.2, so that the result holds

for r = 1. Now consider any A ∈ Su with |A| = r ≥ 2. We know from Lemma 1.B.1 that every u ∈ A

must share the same K − 1 elements. There are MK−1 ways to select the first K − 1 elements, and(
M
r

)
ways of choosing the uncommon element. Finally, the uncommon element can be in any one of K

positions. We conclude that there are exactly

MK−1K ·
(
M

r

)
,

sets A ∈ Su with |A| = r ≥ 2.

2. By the results of Lemma 1.B.2, to construct a set B ∈ Sw of size r from the singletons we can choose

r elements from any combination of the K subsets Wk, but we must choose elements from at least two

subsets, and we must choose less than M elements from each collection. Now note that there are
(
K
`

)
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ways to choose from any 2 ≤ ` ≤ K collections, and
(
M
vk

)
ways to choose 1 ≤ vk ≤M −1 elements from

each collection. Finally, we must ensure that if we are constructing an r-element set B that we have

∑
k

vk = r.

Combining everything, there are

K∑
`=2

(
K

`

) ∑
v∈A(r,M,`)

∏̀
i=1

(
M

vi

) ,

r-element sets in the collection Sw, where

A(r,M, `) =

{
(v1, v2, . . . , v`) ∈ N` :

∑
i

vi = r, 1 ≤ vi ≤M − 1 ∀i

}
,

as claimed.

3. This follows from part 1 of this Theorem when combined with Lemma 1.B.3.

�

Proof of Theorem 2. Notation for the proof is given in Appendix 1.D.

By Theorem 1 the identified set Θf is an interval. Thus, to show consistency with respect to the Hausdorff

metric, it suffices to show that f̂ `n
p→ f ` and f̂un

p→ fu. We can focus on the upper bound problem, since the

lower bound problem is symmetric. The upper bounding problem is:

fu(Pn) = sup
Q∈PU (Pn)

f(PU ). (1.25)

To prove consistency we want to show that for every ε > 0:

lim sup
n→∞

P (|fu(Pn)− fu(PW )| > ε) = 0. (1.26)

Now note:

|fu(Pn)− fu(PW )| =

∣∣∣∣∣ sup
PU∈PU (Pn)

f(PU )− sup
PU∈PU

f(PU )

∣∣∣∣∣ ≤ sup
||PU−P ′U ||≤dH(PU (Pn),PU )

|f(PU )− f(P ′U )| .

Let ∆U denote the (|U| − 1)-simplex. Since ∆U ⊂ RdU is compact, continuity of f implies uniformly

continuity over ∆U . Thus, we know that for every ε > 0 there exists a δ > 0 such that ||PU − P ′U || < δ
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implies |f(PU )− f(P ′U )| < ε. Thus, to show (1.26) it suffices to show that for every δ > 0:

lim sup
n→∞

P (dH(PU (Pn),PU ) > δ) = 0. (1.27)

Note that by assumption (a) (and the fact Artstein’s Theorem implies only linear inequality constraints) PU (·)

is defined completely by linear equality and inequality constraints. Now convert all inequality constraints to

equality constraints by introducing a slackness parameter λk ≥ 0 for each constraint. Let λ denote the vector

of slackness parameters, and let θ = (P ′U , λ
′)′ be the vector of dimension dθ × 1. In addition, let g(θ, PW )

be the de × 1 vector of moment equalities. Rather than include the constraint
∑
u∈U PU (U = u) = 1 as

an equality constraint, note that, as per the remark 1 in Shi and Shum (2015), we can instead drop one

equality constraint gk(θ, PW ) (and thus also the associated slackness parameter λk), and solve for λk using

the constraint:

∑
j∈I(U)

PU (U = uj) +
∑

j∈I(U)

λj = 1,

=⇒ λk = 1−
∑

j∈I(U)

PU (U = uj)−
∑

j∈I(U),j 6=k
λj , (1.28)

and then add the non-negativity constraint on (1.28) (where I(U) is an index set for elements in U). Thus,

there will be (de − 1) equality constraints in the vector g(θ, PW ), and dθ inequality constraints given by the

vector:

h(θ) :=


PU

λ−k

1−
∑
j∈I(U) PU (U = uj)−

∑
j∈I(U),j 6=k λj

 ≥ 0.

Importantly, note that the inequality constraints do not depend on the first-stage parameter PW . Now define

Θ(PW ) = {θ ∈ Θ : g(θ, PW ) = 0, h(θ) ≥ 0}. Consider the criterion function:

T (θ, PW ) = g(θ, PW )′g(θ, PW ).

Then under assumption (d) we have:

Θ(PW ) = arg min
θ∈Θ

T (θ, PW ) s.t. h(θ) ≥ 0.
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The sample analog of the above is:

Θ(Pn) = arg min
θ∈Θ

T (θ,Pn) s.t. h(θ) ≥ 0.

Under assumption (d), dH(PU (Pn),PU )
p→ 0 if dH(Θ(Pn),Θ(PW ))

p→ 0. Thus it suffices to show the latter.

To do this, we will verify the conditions of Theorem 2.1 in Shi and Shum (2015):

1. Since 2W contains at most a finite number of sets, by assumption (c) and the Glivenko-Cantelli Theorem

we know that supA∈2W |Pn(A)− PW (A)| = oP (1); thus, Pn converges uniformly to PW in probability.

2. The (|W|− 1)-simplex ∆W ⊂ RdW is compact. Θ is also compact (since it is without loss of generality

that we restrict λ ∈ [0, 1]).

3. g(·, PW ) is trivially continuously differentiable on Θ for all PW , and h(·) is trivially continuous on Θ;

this follows since both g(·, PW ) and h(·) are linear functions of θ.

4. Note by assumption (a) that Θ(PW ) is defined completely by linear equality and inequality constraints

and is closed and convex, so that together with assumption (d) we have cl(int(Θ(PW ))) = Θ(PW ) (see

Remark (i) after Theorem 2.1 in Shi and Shum (2015)). In addition, by assumption (b) the Jacobian

∂g(θ, PW )/∂θ′ must have full row rank. To see this, first note by linearity of all constraints the Jacobian

is a matrix of constants. Next note all equality constraints can be classified as (i) equality constraints

defining P†U , and (ii) equality constraints that were converted from inequality constraints by adding a

slackness parameter. By assumption (b), the Jacobian of the set of linear equality constraints of type

(i) have full row rank. For equality constraints of type (ii) the rows will also have full rank, since by

construction any equality constraint j that was constructed from an inequality constraint will contain

its own slackness parameter λj (and thus row j contains a 1 in the Jacobian for λj , and row j′ 6= j

contains a 0 for λj). Finally, note that equality constraints of type (ii) can be combined with equality

constraints of type (i) while still yielding a full rank Jacobian. This last step again follows since type

(ii) equality constraints will contain additional non-zero entries in the rows of the Jacobian for the

slackness parameters, so that the gradients of these constraints will not be linearly dependent with the

gradients of the constraints of type (i), which do not contain such non-zero entries.

Consistency of Θ(Pn) for Θ(PW ) in the Hausdorff metric then follows from Theorem 2.1 in Shi and Shum

(2015). This in turn implies consistency of PU (Pn) for PU in the Hausdorff metric, and thus completes the

proof.

�
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Chapter 2

Simple Inference on Functionals of

Set-Identified Parameters Defined by

Linear Moments

This chapter considers uniformly valid (over a class of data generating processes) inference for linear function-

als of partially identified parameters in cases where the identified set is defined by linear (in the parameter)

moment inequalities. We propose a bootstrap procedure for constructing uniformly valid confidence sets for

a linear functional of a partially identified parameter. The proposed method amounts to bootstrapping the

value functions of a linear optimization problem, and subsumes subvector inference as a special case. In

other words, this chapter shows the conditions under which “naively” bootstrapping a linear program can

be used to construct a confidence set with uniform correct coverage for a partially identified linear func-

tional. Unlike other proposed subvector inference procedures, our procedure does not require the researcher

to repeatedly invert a hypothesis test, and is extremely computationally efficient. In addition to the new

procedure, the paper also discusses connections between the literature on optimization and the literature on

subvector inference in partially identified models. This chapter was written jointly with my peer and friend,

JoonHwan Cho.

2.1 Introduction

This chapter proposes a uniformly valid (over a large class of data generating processes) inference procedure

for a linear functional ψ of a partially identified parameter vector θ in models with linear (in θ) moment

functions. In particular, the paper proposes to use a “naive” bootstrap procedure to approximate the distri-

bution of the endpoints of the projected identified set, and discusses conditions under which the procedure

is uniformly valid.

The main idea is to use results from the Operations Research literature that allow the researcher to

approximate the distribution of the value functions in linear programs with stochastic constraints using a

functional delta method. The contribution of this chapter is to use these results for stochastic programs

as a proof device to show the uniform validity of a simple bootstrap procedure for constructing confidence

sets for subvectors or functionals of the identified set in partially identified econometric models. Intuitively,

bounding a linear functional over an identified set defined by linear moment functions amounts to solving

two linear optimization problems: one maximization problem for the upper bound, and one minimization

problem for the lower bound. Thus, the endpoints of the identified set for a functional of a partially-identified

42



www.manaraa.com

parameter can be viewed as value functions of two “stochastic programs.” An inference procedure is then

constructed by decomposing perturbations in the optimal value function into perturbations arising from

the objective function and perturbations arising from the constraint functions. By the envelope theorem,

perturbations in the constraints are related to the value functions through the Lagrange multipliers. The

total effect of perturbations in the constraints on the value function is then given by a weighted sum of

the perturbations in all binding constraints, where the weights are determined by the Lagrange multipliers.

Through this mechanism, we can relate the distribution of the binding moment functions to the distribution

of the value function of a stochastic program.

To prove the validity of our procedure requires noticing that, under some conditions, the value functions

in linear stochastic programs are Hadamard directionally differentiable with respect to perturbations in the

underlying probability measure. However, this form of differentiability is not sufficient for uniformly valid

confidence sets. This result relates to Kasy (2019), who emphasizes that failures of uniformity often result

as failures of the uniform versions of the delta method. We demonstrate the conditions under which the

value functions of a linear stochastic program satisfy the natural definition of uniform Hadamard directional

differentiability with respect to perturbations in the underlying probability measure. The condition that

emerges as being most important for our procedure is the existence and uniqueness of optimal solutions and

Lagrange multipliers.

Uniform Hadamard directional differentiability is sufficient for us to prove the validity of a simple uni-

formly valid bootstrap procedure to estimate the confidence set for a functional of interest. In the envi-

ronment considered in this chapter, bounds on the linear functional of interest can always be constructed

by solving linear programs, and our bootstrap procedure amounts to repeatedly solving analogous “boot-

strap linear programs.” Given it’s simplicity, we call the process of repeatedly solving these bootstrap linear

programs the “naive” bootstrap approach to functional inference in partially identified models. Following

this approach, a confidence set for the partially identified functional of interest is constructed by selecting

appropriate quantiles from these value function bootstrap distributions. In other words, this chapter shows

the conditions under which naively bootstrapping a linear program can be used to construct a confidence

set with uniform correct coverage for a partially identified linear functional.

This naive bootstrap approach has considerable advantages relative to other approaches. In particular, it

does not require repeatedly inverting a hypothesis test, and thus is very computationally efficient—also owing

to the computational efficacy of linear programming—and promising for cases when the parameter vector of

interest is high-dimensional. Indeed, in our main simulation exercise we find it takes only about 10 seconds

to compute a two-sided confidence set for a functional of a partially identified parameter vector with 400

elements. Interestingly, the use of Lagrange multipliers allows us to avoid rescaling the moment conditions

by their sample standard deviations in our procedure. This is in contrast to other comparable methods.

Intuitively, any rescaling of the moment functions is countered by an equivalent (but opposite) rescaling of

the Lagrange multipliers. This ensures our bootstrap procedure remains a sequence of linear—and thus easy

to solve—optimization problems. Furthermore, the assumption of a uniform constraint qualification turns

out to be sufficient to allow the user to avoid using moment selection procedures (see Andrews and Soares

(2010)), which are common in the literature on partial identification. One of our contributions will be to

highlight some interesting comparisons and contrasts between assumptions from the optimization literature

versus the assumptions from the previous literature in partial identification.1

Subvector inference, or inference on functionals of the identified set, has recently been a topic of consider-

able interest in the partial identification literature. The earlier papers of Andrews and Guggenberger (2009)

and Andrews and Soares (2010) propose to project confidence sets constructed for the entire parameter

vector in order to obtain confidence sets for a particular subvector of interest. While these procedures are

1This is also done in a recent paper by Kaido et al. (2019b).
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uniformly valid, they can be highly conservative when the dimension of the partially identified parameter

vector is large (see the discussion in Kaido et al. (2019a)). Both Romano and Shaikh (2008) and Bugni

et al. (2017) consider inverting profiled test statistics in order to construct confidence sets for subvectors or

functionals, where Romano and Shaikh (2008) construct critical values using subsampling and where Bugni

et al. (2017) derive the asymptotic distribution for their profile test statistic for a large class of test func-

tions. Bugni et al. (2017) show that their test dominates projection-based procedures in terms of asymptotic

power, and they derive conditions under which it dominates the subsampling-based approach of Romano

and Shaikh (2008). Kaido et al. (2019a) provide a “calibrated projection” inference method for functionals

of a partially identified parameter. Intuitively, this procedure suitably relaxes the model’s moment inequal-

ities, and then solves two optimization problems subject to the relaxed constraints in order to obtain the

endpoints of the confidence interval for the functional of interest. The relaxation of the constraints requires

the correct calibration of a relaxation parameter in order to obtain uniformly correct coverage. Kaido et al.

(2019a) first linearize any nonlinear moment functions, and then propose an efficient algorithm to calibrate

the relaxation parameter. This allows their procedure to be computationally attractive relative to other

methods in nonlinear models. Similar to the method proposed here, the method of Kaido et al. (2019a) does

not invert a test statistic.

The overall approach to constructing confidence sets in this chapter is most closely related to the approach

in Gafarov (2019), who also shows how to construct uniformly valid confidence sets for linear functionals of a

partially identified parameter in an optimization framework. It is well known from Hirano and Porter (2012)

that it is impossible to obtain a locally unbiased estimator of the value function when the value function is

nondifferentiable, and to address these problems Gafarov (2019) proposes including a regularization term in

the objective function to ensure a unique optimal solution is selected. In contrast we assume the existence

of unique optimal solutions. Similar to Gafarov (2019), we also impose a linear independence constraint

qualification to ensure uniqueness of the Lagrange multipliers. However, we allow for the linear functional

in the bounding problem to be data-dependent, and both our bootstrap procedure and our proof of uni-

form validity are very different. Overall, we believe our contribution is both practical and theoretical, and

complements this recent work by Gafarov (2019).

The main proofs of this chapter uses results from Shapiro et al. (2009). The main result used from

Shapiro et al. (2009) is the proof of Hadamard directional differentiability of value functions for stochastic

programs. However, we extend this result by showing the conditions under which the value functions for

a stochastic program satisfy uniform Hadamard directional differentiability, which is sufficient to derive a

uniform delta method result.

Throughout the paper we use notation standard in empirical process theory; in particular, the expectation

of a random element Xt with respect to a measure P is given by PXt. If the random element Xt is a vector,

then the expectation is interpreted element-wise. The random variables W1,W2, . . . ,Wn are assumed to be

coordinate projections from the product space (Wn,An, Pn), where Pn = P ⊗ P ⊗ . . . ⊗ P , and we will

denote (W∞,A∞, P∞) as the infinite product space. The empirical measure is represented by Pn, which is

implicitly a function of the generating measure Pn at sample size n. We index estimated quantities by the

empirical distribution; for example, rather than θ̂, we write θ(Pn). This is done to emphasize the underlying

measure relevant to the construction of the parameter, and becomes useful in both the discussion and the

proofs of the main results. Finally, we use || · || to denote the euclidean norm throughout. For the most part,

we will avoid issues of measurability as much as possible, although all the proofs follow from the definition

of weak convergence in the sense of Hoffmann-Jørgensen (1991) (c.f. Van Der Vaart and Wellner (1996)

Chapters 1.1 and 1.2).
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2.2 Overview of Results and Motivating Examples

2.2.1 Main Ideas

This subsection will discuss simplified versions of the main ideas in the paper before the technical details are

introduced in the next section. Our main motivation is to construct uniformly valid confidence sets for the

expectation of the random objective function ψ(W, θ), where W ∈ W denotes the relevant finite-dimensional

vector of random variables in the model, and where θ is only partially identified, and constrained to lie in

the identified set.

To this end, we suppose the identified set for θ ∈ Θ is defined by k moment (in)equalities where the

moment function mj(W, θ) : Θ → R is linear in θ ∈ Θ for j = 1, . . . , k. In this case, the identified

set ΘI(P )—indexed here by the true asymptotic distribution P—is compact, and so the image of ΘI(P )

under any continuous functional Pψ(W, θ) : Θ → R will be an interval ΨI(P ) = [Ψ`b
I (P ),Ψub

I (P )]. In

this framework, the endpoints of the interval ΨI(P ) can be determined by solving two linear optimization

problems:

(i) minimize Pψ(W, θ) over θ ∈ ΘI(P ) to determine Ψ`b
I (P ),

(ii) maximize Pψ(W, θ) over θ ∈ ΘI(P ) to determine Ψub
I (P ).

Seen in this way, Ψ`b
I (P ) and Ψub

I (P ) are the value functions of two stochastic linear optimization problems.

Now let θ0 ∈ Θ denote the true value of the parameter, and consider the problem of constructing a confidence

set Cψn (1− α) that asymptotically covers Pψ(W, θ0) with probability at least 1− α uniformly over (θ, P ) ∈
{(θ, P ) : θ ∈ ΘI(P ), P ∈ P}, where P is some large class of data generating processes (DGPs). In particular,

we wish to construct a confidence set Cψn (1− α) such that

lim inf
n→∞

inf
{(ψ,P ): ψ∈ΨI(P ), P∈P}

P (ψ ∈ Cψn (1− α)) ≥ 1− α.

To construct such a set, we will approximate the distribution of the endpoints (Ψ`b
I (P ),Ψub

I (P )) of the

identified set ΨI(P ). In particular, let F denote the relevant class of functions (we define this class more

precisely in Section 2.3). We show that under a constraint qualification condition, for any sequence {Pn ∈
P}∞n=1 converging to a measure P ∈ P in an appropriate sense (to be made precise), there exist continuous

functionals (Ψ`b
I )′P , (Ψ

ub
I )′P : `∞(F)→ R such that

√
n
(
Ψ`b
I (Pn)−Ψ`b

I (Pn)
)
 (Ψ`b

I )′P (GP ), (2.1)

√
n
(
Ψub
I (Pn)−Ψub

I (Pn)
)
 (Ψub

I )′P (GP ), (2.2)

where GP ∈ `∞(F) is the limit of the empirical process Gn,Pn :=
√
n(Pn−Pn) ∈ `∞(F), and (Ψ`b

I (Pn),Ψub
I (Pn))

are suitable estimates of the value functions. Moreover, we show conditions under which:

√
n
(
Ψ`b
I (Pbn)−Ψ`b

I (Pn)
)
|{Wi}ni=1  (Ψ`b

I )′P (GP ), (2.3)

√
n
(
Ψub
I (Pbn)−Ψub

I (Pn)
)
|{Wi}ni=1  (Ψub

I )′P (GP ), (2.4)

uniformly over P, where Pbn is the empirical bootstrap distribution. From here, our proposed confidence set
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takes the form:

Cψn (1− α) :=

[
Ψ`b
I (Pn)− Ψ̂`b

α√
n
,Ψub

I (Pn) +
Ψ̂ub
α√
n

]
,

where the quantiles Ψ̂`b
α and Ψ̂ub

α are selected from the bootstrap approximation to the distributions of

(Ψ`b
I )′P (GP ) and (Ψub

I )′P (GP ) given by (2.3) and (2.4) in order to guarantee uniformly correct coverage. Note

that the approximations in (2.3) and (2.4) can be computed by repeatedly bootstrapping linear programs,

motivating our “naive” bootstrap procedure. After presenting some motivating examples, the next sections

develop this methodology rigorously. The general development of the methodology takes place in two parts:

first, we show the conditions under which the value functions of a linear program are uniformly Hadamard

directionally differentiable, and then we prove that our naive bootstrap can approximate these directional

derivatives uniformly.

2.2.2 Examples

We now present some motivating examples that illustrate why inference procedures for functionals of partially

identified parameters are needed.

Example 1 (Missing Data). Consider the canonical missing data example. In this example the researcher

observes a sample {YiDi, Di}ni=1. For simplicity, suppose that Yi, Di ∈ {0, 1}. The parameter of interest is

the unconditional average of the outcome variable:

Pψ(W, θ) = ψ(θ) =
∑
y

∑
d

θyd · y,

where θyd := P (Y = y,D = d). The constraints imposed by the observed distribution Pn(Y D,D) on the

latent distribution θyd = P (Y = y,D = d) are given by:

Pn(Y D = 0, D = 1) = θ01, (2.5)

Pn(Y D = 1, D = 1) = θ11, (2.6)

Pn(Y D = 0, D = 0) = θ00 + θ10. (2.7)

It is straightforward to see that point identification of θ occurs only when Pn(D = 0) = 0. The identified set

for our function of interest, ΨI(Pn) = [Ψ`b
I (Pn),Ψub

I (Pn)] can be obtained by solving the problems:

Ψ`b
I (Pn) = min

θ∈ΘI(Pn)
ψ(θ), Ψub

I (Pn) = max
θ∈ΘI(Pn)

ψ(θ), (2.8)

where ΘI(Pn) is the set of θyd satisfying the constraints (2.5)-(2.7). Note that the optimization problems in

(2.8) are linear programs. This chapter will attempt to exploit the structure of the optimization problems in

(2.8) to propose an inference procedure that is easy to use for functionals of partially identified parameters.

Here, note that ψ is a functional of the partially identified parameter θ, where the identified set for θ is given

by ΘI(Pn).

Example 2 (Linear Regression with Interval-Valued Dependent Variable). Consider the example of linear

regression with interval-valued dependent variable. We will follow closely the exposition in Kaido et al.

(2019a) Appendix C. In this example the model is given by Y = XT θ + ε, where X ∈ Rd with R points

of support. However, it is assumed that the dependent variable is interval-valued in the following way:

although the value of Y is never observed, there exists two observable random variables Y ∗ and Y∗ such that
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P (Y∗ ≤ Y ≤ Y ∗) = 1. The objective is then to construct bounds on the parameter θ given that researcher

observes a sample {Y ∗i , Y∗i, Xi}ni=1, and never directly observes the value of Y . Denoting the support points

of X as {x1, . . . , xr, . . . , xR}, as in Kaido et al. (2019a) the identified set is given by:

ΘI(P ) := {θ : E[Y∗|X = xr]− xTr θ ≤ 0, xTr θ − E[Y ∗|X = xr] ≤ 0, r = 1, . . . , R}.

We now suppose that the researcher is interested in conducting inference only on the first component θ1 of

the parameter vector θ. Then in our notation we can set ψ(W, θ) = ψ(θ) = θ1. Under some weak conditions

we will have that the identified set for the functional ψ is an interval ΨI(Pn) = [Ψ`b
I (Pn),Ψub

I (Pn)] with the

endpoints determined by the program:

Ψ`b
I (Pn) = min

θ∈ΘI(Pn)
ψ(θ), Ψub

I (Pn) = max
θ∈ΘI(Pn)

ψ(θ), (2.9)

where ΘI(Pn) is the estimate of the identified set obtained by replacing the moment conditions with their

sample analogs. Note that since all moment conditions defining the identified set are linear in θ, the opti-

mization problems in (2.9) are linear programs. Again, this chapter will propose an inference procedure for

functionals of partially identified parameters that uses the special structure of the optimization problems in

(2.9) that characterizes the functional bounding problem.

Example 3 (Nonparametric State Dependence). Consider the model of nonparametric state dependence

given in Torgovitsky (2016). In this model, the researcher observes a realization of a random sequence

Y := (Y0, . . . , YT ) for each individual for T periods. As in Torgovitsky (2016), we consider for simplicity

that each outcome Yt is binary, so that Y ∈ {0, 1}T+1. The sequence of observed outcomes Y are related

to a sequence of unobserved potential outcomes U(0) := (U1(0), . . . , UT (0)) and U(1) := (U1(1), . . . , UT (1))

through the equation:

Yt = Yt−1Ut(0) + (1− Yt−1)Ut(1).

The researcher may also have access to a sequence of covariates X := (X0, . . . , XT ) for each individual. The

object of interest for the researcher is assumed to be treatment effect parameters that depend on the unobserved

potential outcomes (Ut(0), Ut(1)) at time 1 ≤ t ≤ T . Examples of such treatment effect parameters include

the average treatment effect, given by ATEt = P (Ut(0) = 0, Ut(1) = 1) − P (Ut(0) = 1, Ut(1) = 0), or the

voting criterion given by P (Ut(0) = 0, Ut(1) = 1) (or P (Ut(0) = 1, Ut(1) = 0)).

To see how to bound these parameters, define the vector

u := (u0, u1(0), . . . , uT (0), u1(1), . . . , uT (1))′,

where u0 is the initial (period 0) potential outcome. In addition, let U := (U0, U(0), U(1))′, and let

U†(y) := {u : u0 = y0, yt = y(t−1)ut(0) + (1− y(t−1))ut(1), ∀t},

which is the set of all vectors u of potential outcomes that could rationalize an observed vector of outcomes

y = (y0, . . . , yT )
′
. Finally, let X = (x0, . . . , xT )′. Torgovitsky (2016) shows that without any additional

restrictions, the sharp set of constraints on the unobserved joint distribution θu,x := P (U = u, X = x) is

given by:

Pn(Y = y, X = x) =
∑

u∈U†(y)

θu,x. (2.10)
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Torgovitsky (2016) shows how additional restrictions can also be imposed on the unobserved joint distribution

θu,x, such as monotone treatment response (MTR) constraints, stationarity (ST) constraints, monotone

instrumental variable (MIV) constraints and monotone treatment selection (MTS) constraints. All of these

constraints can be imposed on the optimization problem as moment-inequality constraints. Let ΘI(Pn) denote

the set of all joint distributions θ satisfying the imposed constraints as well as the observational equivalence

condition (2.10). Proposition 1 in Torgovitsky (2016) shows that if ψ : ΘI(Pn)→ R is a continuous treatment

effect parameter, then the identified set for ψ can be estimated by ΨI(Pn) = [Ψ`b
I (Pn),Ψub

I (Pn)], and can be

obtained by solving the problems:

Ψ`b
I (Pn) = min

θ∈ΘI(Pn)
ψ(θ), Ψub

I (Pn) = max
θ∈ΘI(Pn)

ψ(θ). (2.11)

Note that when T is large, there can be a large number of constraints defining the set ΘI(Pn), and the

partially identified parameter θ can be high-dimensional.

Example 4 (Inference on Counterfactual Policies). In the setting of Kasy (2016), the researcher is interested

in ranking counterfactual policies “A” and “B” which represent two competing proposals of assigning indi-

viduals to some treatment based on covariate values. It is assumed that the policy maker only has knowledge

of the partially-identified parameters g0(X) := E [Y0|X] and g1(X) := E [Y1|X], where Yd is the partially-

observed potential outcome for treatment state D = d.

We assume that the researcher’s object of interest is the linear functional ψ := ψ(fA, fB) where fA is

the distribution of the random variable Y A representing the observed outcome under policy A, and fB is the

distribution of the random variable Y B representing the observed outcome under policy B. Furthermore, let

DA be the random variable representing treatment assignment under policy A, and let DB be the random

variable representing treatment under assignment B, and assume that DA, DB ⊥⊥ (Y0, Y1)|X. Some simple

objective functions include ψA := E[Y A] (or ψB := E[Y B ]), which measures the average outcome under

policy A, or ψAB := E[Y A−Y B ], which measures the difference in average outcomes between policies A and

B. Let Gd denote the identified set for gd(X). Note that the objective function ψA can be decomposed as:

ψA = E[Y A]

= E
[
E
[
Y A|DA = 1, X

]
P (DA = 1|X) + E

[
Y A|DA = 0, X

]
(1− P (DA = 1|X))

]
= E

[
E [Y0|X] + P (DA = 1|X) (E [Y1|X]− E [Y0|X])

]
= E

[
g0(X) + hA(X) (g1(X)− g0(X))

]
,

where hA(X) = P (DA = 1|X). Since g0(·) and g1(·) are only partially-identified, ψA will also be partially

identified. Let ΨA
I (P ) = [ΨA

`b(P ),ΨA
ub(P )] denote the identified set for ψA = E[Y A], where the endpoints of

ΨA
I are determined by:

ΨA
`b(P ) = inf

(g0,g1)∈G0×G1

∑
x∈X

[
g0(x) + hA(x) (g1(x)− g0(x))

]
P (X = x), (2.12)

ΨA
ub(P ) = sup

(g0,g1)∈G0×G1

∑
x∈X

[
g0(x) + hA(x) (g1(x)− g0(x))

]
P (X = x), (2.13)

where P (X = x) is the probability X = x in the target population. Similarly, as in Kasy (2016), the objective

function ψAB can be decomposed as:

ψAB = E
[
Y A − Y B

]
= E

[(
hA(X)− hB(X)

)
(Y1 − Y0)

]
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= E
[
hAB(X)g(X)

]
,

where hAB(X) = hA(X) − hB(X), hA(X) = P (DA = 1|X), hB(X) = P (DB = 1|X) and g(X) = g1(X) −
g0(X). Since g(X) is only partially identified, the objective function ψAB will also only be partially identified.

Let ΨAB
I (P ) = [ΨAB

`b (P ),ΨAB
ub (P )] denote the identified set for ψAB, where the endpoints of ΨAB

I are given

by:

ΨAB
`b (P ) = inf

(g0,g1)∈G0×G1

∑
x∈X

hAB(x) (g1(x)− g0(x))P (X = x), (2.14)

ΨAB
ub (P ) = sup

(g0,g1)∈G0×G1

∑
x∈X

hAB(x) (g1(x)− g0(x))P (X = x), (2.15)

where P (X = x) is the probability X = x in the target population. In this example, note that the partially

identified parameter is θ = (g0, g1) and the identified set is ΘI(P ) = G0 × G1.

Remark 2.2.1. In practice, the probabilities P (X = x) in the optimization problems (2.12) and (2.13),

or (2.14) and (2.15), may need to be estimated, meaning that the objective functions in these optimization

problems contain sampling uncertainty that must be accounted for when performing inference on either ΨA
I

or ΨAB
I in addition to the sampling uncertainty inherent in the estimation of the sets G0 and G1. Currently,

we are unaware of any uniformly valid inference procedure in partially identified models that can handle these

cases.

2.3 Methodology

In this section, we develop the ideas introduced in the previous section. We consider a setting where the

identified set ΘI(P ) is defined by moment equalities and inequalities that are satisfied at the true parameter

θ0:

Pmj(W, θ0) = 0, for j = 1, . . . , r1, (2.16)

Pmj(W, θ0) ≤ 0, for j = r1 + 1, . . . , r1 + r2. (2.17)

Note that we can always convert these moment equalities/inequalities defined above into k = 2r1 + r2

equivalent moment inequalities given by:

Pmj(W, θ0) ≤ 0, for j = 1, . . . , r1, (2.18)

−Pmj(W, θ0) ≤ 0, for j = 1, . . . , r1, (2.19)

Pmj(W, θ0) ≤ 0, for j = r1 + 1, . . . , r1 + r2. (2.20)

Thus, we will assume throughout most of the exposition that the model is defined only by k moment

inequalities:

Pmj(W, θ0) ≤ 0, for j = 1, . . . , k. (2.21)

Only on rare occasions will it be necessary to know which of the moment inequalities correspond to moment

equalities; in these cases we will simply refer back to the original formulation in (2.16) and (2.17).

We assume that the researcher is interested in bounding the expected value of a function ψ :W×Θ→ R.
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Define the following class of functions:

F :=
{

(ψ(W, θ),m1(W, θ), . . . ,mk(W, θ))
T

: θ ∈ Θ
}
. (2.22)

A typical element of F will then be the vector-valued function:

f(W, θ) =
[
ψ(W, θ),m1(W, θ), . . . ,mk(W, θ)

]T
.

Furthermore, we will equip this class of functions with a semimetric that depends on the probability measure

P :

ρP (θ, θ′) :=
∣∣∣∣∣∣diag(VP (f(W, θ)− f(W, θ′))

1/2
)
∣∣∣∣∣∣ , (2.23)

for θ, θ′ ∈ Θ.2 This semimetric was also considered in Bugni et al. (2015). Furthermore, define the class:

F ′ := {f − f ′ : f, f ′ ∈ F},

and let G = F ∪F2∪ (F ′)2. Let {Pn ∈ P}n≥1 be any sequence of data-generating measures. Throughout the

text, we will interpret the statement Pn  P as weak convergence of the measures {Pn ∈ P}n≥1 to P ∈ P;

that is, weak∗ convergence. Asymptotically validity of our confidence set uniformly over P is equivalent to

asymptotic validity along any sequence {Pn ∈ P}∞n=1. Under the assumptions to be presented shortly, the

collection P will be closed and uniformly tight. Thus, from any sequence {Pn ∈ P}∞n=1 we can extract a

weakly convergent subsequence converging to some P ∈ P. As a result, for our purposes we will have that

asymptotically validity of our proposed confidence set uniformly over P will be equivalent to asymptotic

validity along any weakly converging sequence Pn  P . The reader is encouraged to keep this in mind

throughout.

Now, let P denote the collection of all probability measures on W. We now impose the following

assumptions:

Assumption 2.3.1. The parameter space (Θ,P) satisfies the following conditions:

(i) Θ ⊂ Rdθ is convex and compact.

(ii) F is a measurable class of functions.

(iii) Each distribution P ∈ P ⊆P satisfies:

(a) Pmj(W, θ0) ≤ 0, for j = 1, . . . , k.

(b) In a sample {Wi}ni=1, Wi are independent and identically distributed according to P ∈ P.

(iv) There exists a bounded envelope function F for the class F such that for some a > 0,

sup
P∈P

max
{
P ||F (W )||2+a, PW

}
<∞.

Remark 2.3.1. In Assumption 2.3.1(ii), we call F measurable if F is P−measurable in the sense of Van

Der Vaart and Wellner (1996) Definition 2.3.3 for all probability measures P ∈ P.

2Recall a semimetric satisfies (i) ρ(f, f) = 0, (ii) ρ(f, g) ≤ ρ(f, h) + ρ(h, g) and (iii) ρ(x, y) = ρ(y, x). However, unlike a
metric, a semimetric can be equal to zero when evaluated at two distinct elements.
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Note that we can write the identified set ΘI(P ) as:

ΘI(P ) = {θ ∈ Θ : Pmj(W, θ) ≤ 0, j = 1, . . . , k} . (2.24)

Now let ΘI(Pn) denote the estimate of the identified set:

ΘI(Pn) = {θ ∈ Θ : Pnmj(W, θ) ≤ 0, j = 1, . . . , k} , (2.25)

where Pn denotes the empirical measure for the first n observations:

Pn :=
1

n

n∑
i=1

δWi , (2.26)

where δWi is the Dirac delta function. We restrict attention to a certain class of functionals of the identified

set.

Assumption 2.3.2. (i) The functional of interest ψ(w, θ) :W×Θ→ R is linear in θ, and is continuous in

w ∈ W; (ii) the functions mj(w, θ) :W ×Θ→ R are linear in θ and continuous in w ∈ W for j = 1, . . . , k.

Denote the identified set for Pψ(W, θ) as ΨI(P ), and note that the identified set for Pψ(W, θ) is the

projection of ΘI(P ) on the manifold generated by Pψ(W, θ). As such, under standard conditions (see

Lemma 2.A.4(ii)) the projection estimator ΨI(Pn) will be a consistent estimator of ΨI(P ). Moreover,

since Pψ(W, θ) is continuous and ΘI(P ) is convex and compact, the identified set ΨI(P ) is an interval—

ΨI(P ) = [Ψ`b
I (P ),Ψub

I (P )]—with endpoints determined by:

Ψ`b
I (P ) := inf

θ∈Θ
Pψ(W, θ) s.t. Pmj(W, θ) ≤ 0, j = 1, . . . , k, (2.27)

Ψub
I (P ) := sup

θ∈Θ
Pψ(W, θ) s.t. Pmj(W, θ) ≤ 0, j = 1, . . . , k. (2.28)

However, since P is not known, the programs (2.27) and (2.28) will be approximated using the empirical

distribution Pn by replacing the population moment conditions and objective function with their sample

counterparts:

Ψ`b
I (Pn) := inf

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ 0, j = 1, . . . , k, (2.29)

Ψub
I (Pn) := sup

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ 0, j = 1, . . . , k. (2.30)

After an estimate of the identified set is obtained, interest will lie in constructing uniformly valid confidence

sets for the true parameter ψ0 := Pψ(W, θ0). To perform inference on the true parameter using the optimal

values (Ψ`b
I (P ),Ψub

I (P )) in programs (2.27) and (2.28), we will approximate the distributions of
√
n(Ψ`b

I (Pn)−
Ψ`b
I (P )) and

√
n(Ψub

I (Pn)−Ψub
I (P )) by a simple bootstrap procedure, and will be particularly interested in

proving the procedure is valid uniformly over P.

Remark 2.3.2. As a technical note, the functions (Ψ`b
I (·),Ψub

I (·)) will be seen as maps from P+ to R, where

P+ is defined as the collection of all measures P as well as all finite empirical measures Pn generated by a

P ∈ P (i.e. P+ = span(P, {δw}w∈W), where {δw}w∈W is any finite collection of point masses). It will be

useful to distinguish between the collections P and P+ throughout.
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2.3.1 Value Function Differentiability

Recall from the discussion in Section 2.2 that our first step will be to show that the value functions satisfy an

appropriate level of differentiability with respect to the underlying probability measure. Since the underlying

probability measure is a possibly infinite-dimensional object, we must use a form of differentiability that is

valid between metric spaces. In particular, it is well-known (e.g. Shapiro (1990), Shapiro (1991)) that under

some conditions the functions (Ψ`b
I (P ),Ψub

I (P )) are Hadamard directionally differentiable. To introduce the

differentiability concepts used in this chapter in general form, let D and E be topological vector spaces.

Definition 2.3.1 (Hadamard Directional Differentiability). A map φ : Dφ ⊆ D → E is called Hadamard

directionally differentiable at ζ ∈ Dφ if there is a linear map φ′ζ : D→ E such that

φ(ζ + tnhn)− φ(ζ)

tn
→ φ′ζ(h),

for converging sequences {tn} ⊂ R+ with tn ↓ 0 and hn → h such that ζ + tnhn ∈ Dφ for every n. In

addition, we say φ is Hadamard directionally differentiable tangential to a set D0 ⊆ D if we also require that

the limit h ∈ D0 in the above.

While Hadamard directional differentiability can be used to justify an inference procedure in stochastic

programs for a fixed data-generating measure P ∈ P (c.f. Shapiro (1991)), it is not sufficient to construct an

inference procedure for stochastic programs that is valid uniformly over P. It is natural to wonder whether

stochastic programs are uniformly Hadamard directionally differentiable, which is defined in the following:

Definition 2.3.2 (Uniform Hadamard Directional Differentiability). Let φ : Dφ ⊆ D → E, D0 ⊆ D, and

Dζ ⊆ Dφ. The map φ : Dφ ⊆ D → E is called uniformly Hadamard directionally differentiable in ζ ∈ Dζ if

there is a continuous map φ′ζ : D→ E such that

φ(ζn + tnhn)− φ(ζn)

tn
→ φ′ζ(h), (2.31)

for all converging sequences ζn → ζ ∈ Dζ , {tn} ⊂ R+ with tn ↓ 0, and hn → h such that ζn + tnhn ∈ Dφ for

every n. In addition, we say φ is uniformly Hadamard directionally differentiable tangential to a set D0 ⊆ D
if we also require that the limit h ∈ D0 in the above.

This definition is analogous to the extension of Hadamard differentiability to uniform Hadamard differ-

entiability presented in Belloni et al. (2017), although our definition restricts tn → 0 from above (providing

a “direction”). It also allows the spaces involved to be topological vector spaces rather than normed linear

spaces, and allows the derivative map φ′ζ to be continuous rather than linear.

In addition, reflecting more the definition in Van Der Vaart and Wellner (1996) p. 379, we do not explicitly

require that the derivative map (ζ, h) 7→ φ′ζ(h) be continuous at every (ζ, h), as is done in the extension of

Hadamard differentiability to uniform Hadamard differentiability in Belloni et al. (2017). However, similar

to Belloni et al. (2017), we will use the flexibility provided by the above definition to allow ζn to lie outside

Dζ .
As we will see, under some conditions the value functions of a stochastic program are differentiable in

the sense of Definition 2.3.2. Our first main result requires non-emptiness of the identified set, the existence

and uniqueness of Lagrange multipliers, and uniqueness of the optimal solutions in the programs (2.27) and

(2.28). To guarantee these properties will require that a “uniform constraint qualification” holds for the

linear programs. We impose such a constraint qualification in the next assumption.
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Let A (θ, P ) be an index set defined as:

A (θ, P ) := {j ∈ {r1 + 1, . . . , r1 + r2} : Pmj(W, θ) = 0}, (2.32)

i.e. A (θ, P ) denotes the set indexing the binding moment inequalities at θ for some probability measure

P ∈ P. Finally, let dBL : P ×P → R+ denote the bounded Lipschitz metric, which is defined for any

metric space D by:

dBL(P,Q) := sup
f∈BL1(D)

∣∣∣∣∫ f dP −
∫
f dQ

∣∣∣∣ ,
where:

BL1(D) := {f : D→ R : ||f ||∞ ≤ 1 and |f(x)− f(y)| ≤ |x− y| for all x 6= y}.

Assumption 2.3.3. Let θ∗`b(P ) and θ∗ub(P ) be the optimal solutions to the problems (2.27) and (2.28), let

G(θ, P ) be the matrix formed by vertically stacking the row vectors {∇θPmj(W, θ)}r1j=1 and {∇θPmj(W, θ)}j∈A (θ,P ),

and let Pε := {Q ∈ P+ : dBL(Q,P ) ≤ ε, P ∈ P}. Then there exists ε > 0 such that:

(i) ΘI(P ) 6= ∅ for all P ∈ Pε.

(ii) (LICQ) There exists a κ > 0 such that:

inf
P∈Pε

min
{
eig
(
G(θ∗`b(P ), P )G(θ∗`b(P ), P )T

)
, eig

(
G(θ∗ub(P ), P )G(θ∗ub(P ), P )T

)}
≥ κ. (2.33)

where eig(A) denotes the minimum eigenvalue of A.

(iii) The optimal solutions θ∗`b(P ) and θ∗ub(P ) are unique uniformly over Pε.

Assumption 2.3.3(i) implies that, for large enough n, the identified set is non-empty. Given non-emptiness

of the identified set, Assumption 2.3.3(ii) implies a uniform version of the linear independence constraint

qualification (LICQ), and is instrumental in ensuring the existence and uniqueness of Lagrange multipliers

in the programs (2.27) and (2.28). Finally, the interpretation of Assumption 2.3.3(iii) is straightforward.

Constraint qualifications in various forms have appeared throughout the recent history of partial iden-

tification (e.g. Beresteanu and Molinari (2008), Pakes et al. (2011) Kaido and Santos (2014), Freyberger

and Horowitz (2015), Kaido et al. (2019a), Gafarov et al. (2018), and Gafarov (2019)). We refer to the

recent paper of Kaido et al. (2019b) for a full comparison of the constraint qualifications used in partial

identification. There are some cases where it may be easy to directly verify that the Assumption 2.3.3(ii) is

satisfied, but in general Assumption 2.3.3 is a high-level condition.3 We shall attempt to provide some more

perspective on the strength of this assumption in our discussion in Section 2.4.

All components of Assumption 2.3.3 are regularity assumptions that are important in the proof of uniform

Hadamard directional differentiability. Specifically, it is necessary to restrict the optimal solutions and

Lagrange multipliers in (2.27) and (2.28) to be unique for all P ∈ P. To understand why, consider the

problem of multiple optimal solutions, and note that if the problems (2.27) and (2.28) admit multiple solutions

there may be differences between the sets representing “the limiting optimal solutions” (over the sequence

{Pn ∈ P}∞n=1), and the sets representing “the optimal solutions at the limit” (P ∈ P). This is related to the

Theorem of the Maximum, and the fact that the Theorem of the Maximum guarantees only that the solution

3For example, if the moment functions can be expressed as Pmj(W, θ) = Pm̃j(W ) + a′jθ, where m̃j is a function of the

random variable W ∈ W, and aj ∈ Rd is a vector, then it suffices to verify the Jacobian of the moment functions (w.r.t. θ) has
full column rank.
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correspondence is upper hemicontinuous, but not lower hemicontinuous (and thus, not continuous). In this

case it is possible to show that the value functions Ψ`b
I (·) and Ψub

I (·) are Hadamard directionally differentiable,

but not necessarily uniformly Hadamard directionally differentiable. The same intuition follows for the

Lagrange multipliers. However, Wachsmuth (2013) shows that the LICQ—implied by Assumption 2.3.3—

is the weakest constraint qualification under which the Lagrange multipliers are guaranteed to be unique.

Since the LICQ is implied uniformly over Pε by Assumption 2.3.3(ii), existence and uniqueness of Lagrange

multipliers also follows from Assumption 2.3.3(ii). Assumption 2.3.3(iii) then imposes uniqueness of optimal

solutions separately. Assumption 2.3.3(i) enables us to impose Assumptions 2.3.3(ii) and (iii) over Pε, but

is also required to ensure that the uniform Hadamard directional derivative is well-defined, which would not

be the case if the identified set was allowed to be empty for all n.

A few additional remarks about Assumption 2.3.3 are in order. First, Assumption 2.3.3 is one of the rare

cases where it is useful to distinguish between moment equalities as in (2.16) and moment inequalities as in

(2.17), since the assumption imposes different conditions on the two types of moments. Next note that it

is possible to show that Assumption 2.3.3 implies that at every P ∈ P there must be at least one interior

point of the set defined by the moment inequalities at which all moment equalities are satisfied. The major

restriction imposed by this implication is that the moment inequalities evaluated at the limiting P ∈ P
cannot point-identify the parameter of interest.4 This condition is reminiscent of condition 4 in Theorem 2.1

in Shi and Shum (2015), and its discussion on page 499 of Shi and Shum (2015). Similar to their discussion,

we note that in many cases this assumption will fail when two inequality constraints become equivalent, in

which case the inequality constraints can be combined to form an equality constraint so that the assumption

still holds. Finally, note that this assumption is sufficient for our method to be uniformly valid, but is

not necessary. However, the assumption is the most primitive assumption we are currently aware of, as it

connects to the highly used constraint qualification assumptions in optimization literature while imposing

minimal constraints on any sequence {Pn ∈ P+}∞n=1 required for uniformity.

The final assumption relates to the gradient of the objective function and the moments:

Assumption 2.3.4. The gradients {∇θPψ(W, θ), {∇θPmj(W, θ)}kj=1} are uniformly bounded over Pε.

This assumption is required only to show that the Lagrange multipliers are uniformly bounded over Pε.
Any other assumption that implies uniform boundedness of the Lagrange multipliers might then be safely

substituted for Assumption 2.3.4.

Finally, as a piece of technical machinery, we define the tangent cone as:

TP (F) = {v ∈ UCb(F , ρP ) : ∀tn ↓ 0, ∀{Pn ∈ P}∞n=1  P ∈ P, ∃{Qn ∈ P+}∞n=1 s.t. t−1
n (Qn − Pn)→ v},

(2.34)

where UCb(F , ρP ) ⊂ `∞(F) denotes the space of bounded, and uniformly continuous functions with respect

to the semimetric ρP defined in (2.23). While restricting the tangent cone to be a subset of UCb(F , ρP )

might appear to be restrictive, under the Donsker-type assumptions to be introduced later almost all paths

of the limit of the empirical process
√
n (Pn − Pn) will be uniformly continuous; see Addendum 1.5.8 in Van

Der Vaart and Wellner (1996). We now have the following result:

Theorem 2.3.1. Suppose Assumptions 2.3.1 - 2.3.4 hold, and consider Ψ`b
I ,Ψ

ub
I : P+ → R defined by

the programs (2.29) and (2.30). Then Ψ`b
I (·),Ψub

I (·) are uniformly Hadamard directionally differentiable

tangential to TP (F). In particular, for all weakly converging sequences Pn  P ∈ P, {tn} ⊂ R+ with tn ↓ 0,

4Note also that this condition rules out the case that the moment inequalities define an empty region. However, we do not
consider this a “major restriction” of our method, since if the true identified set is empty then computing functionals over the
identified set becomes a dubious exercise.
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and hn → h ∈ TP (F) such that Pn + tnhn ∈ P+ for every n, we have:

(Ψ`b
I )′P (h) := lim

n→∞
Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

tn
= h1ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j(P )hj+1mj(W, θ
∗
`b(P ))), (2.35)

(Ψub
I )′P (h) := lim

n→∞
Ψub
I (Pn + tnhn)−Ψub

I (Pn)

tn
= −h1ψ(W, θ∗ub(P )) +

k∑
j=1

λ∗ub,j(P )hj+1mj(W, θ
∗
ub(P ))),

(2.36)

where hjfj is the jth component of hf for f ∈ F , θ∗`b(P ) and θ∗ub(P ) are the optimal solutions in the lower

and upper bounding problems at P ∈ P, and {λ∗`b,j(P )}kj=1 and {λ∗ub,j(P )}kj=1 are the Lagrange multipliers

in the lower and upper bounding problems at P ∈ P.

The uniform component of this theorem lies in the fact that it is valid over any generating sequence

{Pn ∈ P} P ∈ P. This uniform version of differentiability turns out to be sufficient to apply the extended

continuous mapping theorem (Theorem 1.11.1 in Van Der Vaart and Wellner (1996)) in order to relate this

result to inference on the optimal value functions. This is exactly what is done in Lemma 2.3.1 in the next

subsection.

2.3.2 From Differentiability to Weak Convergence

We now consider the asymptotic distribution of the properly rescaled and recentered value functions given in

(2.29) and (2.30), which will make use of the uniform differentiability property given in Theorem 2.3.1. To

cover the case of a drifting sequence of data-generating processes, which will be necessary to show uniformity,

we impose additional assumptions.

Assumption 2.3.5. The collections F and P satisfy the following:

(i) The empirical process Gn,P :=
√
n(Pn−P ) is asymptotically equicontinuous uniformly over P; that is,

for every ε > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P ∗P

(
sup

ρP (θ,θ′)<δ

||Gn,P f(W, θ)−Gn,P f(W, θ′)|| > ε

)
= 0,

where ρP is as in (2.23).

(ii) The semimetric ρP satisfies:

lim
δ↓0

sup
||(θ1,θ′1)−(θ2,θ′2)||<δ

sup
P∈P
|ρP (θ1, θ

′
1)− ρP (θ2, θ

′
2)| = 0.

(iii) Let A (θ, P ) ⊆ {r1 + 1, . . . , r1 + r2} denote the binding moment inequalities at (θ, P ), let Ieq =

{1, . . . , r1}, and let Vj(θ) := V ar(mj(W, θ)), for j = 1, . . . , r1 + r2. Then there exists a constant

v > 0 such that for all P ∈ P:

inf
θ∈ΘI(P )

min
j∈A (θ,P )∪Ieq

Vj(θ). ≥ v

(iv) Let A (θ, P ) ⊆ {r1 + 1, . . . , r1 + r2} denote the binding moment inequalities at (θ, P ), and let σ > 0 be

a constant. One of the following two holds:
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(a) Let V m
P := V arP

{
{mj(W, θ)}r1j=1, {mj(W, θ)}j∈A (θ,P )

}
. The objective function ψ(w, θ) is a triv-

ial function of w, and we have:

inf
θ∈ΘI(P )

eig(V m
P ) ≥ σ.

(b) Let VP := V arP
{
ψ(W, θ), {mj(W, θ)}r1j=1, {mj(W, θ)}j∈A (θ,P )

}
. Then we have:

inf
θ∈ΘI(P )

eig(VP ) ≥ σ.

(v) There exist positive constants C, δ > 0 such that maxj=1,...,k |Pmj(W, θ)| ≥ C min(δ, dH(θ,ΘI(P ))) for

every P ∈ P and θ ∈ Θ, where dH is the Hausdorff metric.

Assumptions 2.3.5(i) and 2.3.5(ii) and are required to apply a uniform Donsker theorem to the class

of functions F . Also related are Assumption 2.3.5(iii) and 2.3.5(iv), which are required to ensure a uni-

form multivariate central limit theorem holds for the moment functions. These assumptions are related to

Assumption 4.3 in Kaido et al. (2019a), and are also required for our bootstrap procedure to hold. The

option (a) or (b) in Assumption 2.3.5(iv) splits the cases when the researcher’s objective function depends

on W (such as in Example 4) with the cases when the researcher’s objective function does not depend on W

(such as in subvector inference). Finally, Assumption 2.3.5(v) is the partial identification condition given in

Chernozhukov et al. (2007a), equation (4.5), and is useful when establishing the Hausdorff consistency and

the rate of convergence of the estimated identified set to the true identified set.

In the following lemma, for any sequence {Pn ∈ P}∞n=1 converging to the Borel probability measure

P ∈ P, we let Gn,Pn :=
√
n (Pn − Pn) ∈ `∞(F) denote the empirical process indexed by Pn. Adding

Assumption 2.3.5, we have the following result:

Lemma 2.3.1. Suppose Assumptions 2.3.1 - 2.3.5 hold. Then for any sequence {Pn ∈ P}∞n=1  P ∈ P we

have Gn,Pn  GP where GP is a tight Borel measurable element in TP (F), and:

√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) (Ψ`b

I )′P (GP ), (2.37)

√
n(Ψub

I (Pn)−Ψub
I (Pn)) (Ψub

I )′P (GP ). (2.38)

This result follows from the extended continuous mapping theorem (Theorem 1.11.1 in Van Der Vaart

and Wellner (1996)) in combination with the result of Theorem 2.3.1. When combined with Theorem 2.3.1,

Lemma 2.3.1 shows that the properly recentered and rescaled value functions converge in distribution to

(Ψ`b
I )′P (GP ) and (Ψub

I )′P (GP ), evaluated at the limiting empirical process GP , along any converging sequence

{Pn ∈ P}∞n=1 satisfying Assumptions 2.3.1 - 2.3.5. The next section shows that the objects on the right side

of (2.37) and (2.38) can be approximated uniformly using a nonparametric bootstrap procedure.

2.3.3 The Bootstrap Version

This section proposes a bootstrap procedure that will allow us to consistently estimate the distributions of the

value functions (Ψ`b
I (P ),Ψub

I (P )) uniformly over P. In particular, we propose the following approximations:

Lower Approximation:
√
n
(
Ψ`b
I (Pbn)−Ψ`b

I (Pn)
)
, (2.39)

Upper Approximation:
√
n
(
Ψub
I (Pbn)−Ψub

I (Pn)
)
. (2.40)
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We will use the distribution of (2.39) to approximate the distribution of (Ψ`b
I )′P (GP ), and we will use the

distribution of (2.40) to approximate the distribution of (Ψub
I )′P (GP ).

Remark 2.3.3. Note, unlike typical inference procedures, we do not standardize the moment conditions by

their sample standard deviations. However, our procedure is still invariant to rescaling of the moment condi-

tions by the fact that any rescaling will be reflected in the procedure as an equivalent (but opposite) rescaling

of the Lagrange multipliers. Furthermore, the imposition of Assumption 2.3.3 allows us to forgo using any

moment selection procedure (see Andrews and Soares (2010)) which are typically used in inference problems

for partially identified models. This connection between moment selection and constraint qualifications is

interesting in its own right.

We must be precise about the conditions under which the law of the approximations (2.39) and (2.40),

conditional on the data {Wi}ni=1, can approximate the unconditional law of (Ψ`b
I )′P (GP ) and (Ψub

I )′P (GP )

uniformly over P. Let {{W b
i }ni=1 : b = 1, . . . , B} denote the bootstrap samples. We maintain the following

assumption:

Assumption 2.3.6. The bootstrap samples {W b
i }ni=1 for b = 1, . . . , B, are drawn i.i.d. with replacement

from the original sample {Wi}ni=1.

The following lemma, which is necessary for our main result, shows that the proposed bootstrap procedure

is uniformly valid:

Lemma 2.3.2. Suppose that conditional on {Wi}ni=1 we have that, uniformly over P, Gbn  GP where GP
is a tight random element in `∞(F). Then under Assumptions 2.3.1-2.3.6:

√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn))|{Wi}ni=1  (Ψ`b

I )′P (GP ),

√
n(Ψub

I (Pbn)−Ψub
I (Pn))|{Wi}ni=1  (Ψub

I )′P (GP ).

A confidence set for the true parameter ψ0 can then be constructed using the quantiles of the bootstrapped

distributions of (2.39) and (2.40). In particular, the confidence set Cψn (1 − α) with asymptotic coverage

probability of 1− α can be constructed as:

Cψn (1− α) :=

[
Ψ`b
I (Pn)− Ψ̂`b

α√
n
,Ψub

I (Pn) +
Ψ̂ub
α√
n

]
, (2.41)

where the pair (Ψ̂`b
α , Ψ̂

ub
α ) minimize the length of the confidence set Cψn (1− α) subject to the constraints:

P bn

(√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pbn)−Ψub
I (Pn)) +

√
n∆(Pn)

)
≥ 1− α, (2.42)

P bn

(√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn))−

√
n∆(Pn) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pbn)−Ψub
I (Pn))

)
≥ 1− α, (2.43)

where P bn is the bootstrap distribution and ∆ is the length of the identified set. Note that under Assumption

2.3.3, we will rule out cases where length of the identified set can be drifting towards zero and thus we avoid

issues of uniformity that occur in this scenario (see Stoye (2009b)).

The following result verifies that under our assumptions, the confidence set given in (2.41) is uniformly

asymptotically valid:
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Theorem 2.3.2. Under Assumptions 2.3.1 - 2.3.6,

lim inf
n→∞

inf
{(ψ,P ): ψ∈ΨI(P ), P∈P}

P
(
ψ ∈ Cψn (1− α)

)
≥ 1− α, (2.44)

where Cψn (1− α) is as in (2.41).

The confidence set Cψn (1−α) is both conceptually simple and easy to implement. Indeed, computing the

confidence set amounts to bootstrapping the value functions for the optimization problems that define the

endpoints of the set ΨI(·). Calibrating the critical values Ψ̂`b
α and Ψ̂ub

α is then easily done once the bootstrap

distribution has been recovered. In other words, Assumptions 2.3.1 - 2.3.6 are sufficient for a researcher to

“naively” bootstrap the value functions of a linear program in order to construct a uniformly valid confidence

set for a linear functional of interest.

Intuitively, most of the “heavy lifting” required to prove Theorem 2.3.2 has already been completed in

the proofs of Lemmas 2.3.1 and Lemma 2.3.2, and both of these Lemmas rely crucially on Theorem 2.3.1.

Most of the assumptions needed to obtain Theorem 2.3.2 are analogous to assumptions made previously in

the literature in partial identification (c.f. Bugni et al. (2015), Bugni et al. (2017) and Kaido et al. (2019a)),

the important exception being Assumption 2.3.3. Indeed, the simplicity of our procedure relative to previous

approaches might aptly be characterized as arising primarily from Assumption 2.3.3, which is motivated by

analogous assumptions in the literature on optimization. However, as noted by Kaido et al. (2019b), even

Assumption 2.3.3 can be recognized in various forms in the literature in partial identification. In the next

section, we will attempt to provide the reader with some further intuition regarding Assumption 2.3.3.

2.4 Further Discussion

This section provides some additional discussion of the method proposed in the previous section. In partic-

ular, this section will attempt to provide some further intuition for Assumption 2.3.3, and will then discuss

the case when the identified set is empty in finite sample.

2.4.1 Constraint Qualifications and Uniqueness of Lagrange Multipliers

Researchers may be concerned about imposing a uniform version of the LICQ, as is implied by Assumption

2.3.3(ii). Indeed, this is a somewhat non-standard assumption in the econometrics literature, although various

forms of constraint qualifications appear in many papers on subvector inference in partial identification (see

Kaido et al. (2019b)). In this section we show that, at least for a fixed data-generating measure P , the

cases in which the LICQ is not satisfied are somewhat pathological, or “non-generic,” in a sense to be made

precise shortly.5

To state the result, let us suppose for simplicity that the researcher has only moment inequality con-

straints, and let MP (θ) denote the column vector with rows {Pmj(W, θ)}kj=1. For any feasible θ we must

have MP (θ) ≤ 0. We now consider a ε−perturbation of the moment conditions, so that the perturbed model

is satisfied when MP (θ) ≤ ε, where ε := (ε1, . . . , εk)
T ∈ E is a perturbation parameter. We will take E = Rk,

and we will equip E with a probability measure Pε that is absolutely continuous with respect to the Lebesgue

measure. Finally, let Gε(θ, P ) be the matrix with rows {∇θPmj(W, θ)}j∈Aε(θ,P ), where Aε(θ, P ) is an index

set for the binding moment inequalities at (θ, P ) with perturbation ε; i.e., the moment inequalities that

satisfy Pmj(W, θ) = εj at (θ, P ).

We can now present an interesting proposition, which is derived from a result in differential topology. To

state and prove the result, recall that a point θ is called a critical point of a map f : Θ→ Rdf if the Jacobian

5We are grateful to Victor Aguirregabiria for this suggestion.
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∇θf(θ) does not have full row rank at θ. For any such θ, the value y = f(θ) is called a critical value. Sard’s

Theorem from differential topology then says that if f is sufficiently smooth, then the set of critical values

for f has Lebesgue measure zero in Rdf . Using this result, we can obtain the following proposition due to

Spingarn and Rockafellar (1979):

Proposition 2.4.1. Suppose that MP (θ) is r−times continuously differentiable, where r ≥ max{1, dθ−k+1}.
Then Pε−almost surely, for any θ satisfying MP (θ) ≤ ε we will have:

eig
(
Gε(θ, P )Gε(θ, P )T

)
> 0. (2.45)

Proof. Up to a change in notation, the proof follows exactly from the proof of Spingarn and Rockafellar (1979)

Theorem 1, and is included only for completeness. Fix any θ satisfying MP (θ) ≤ ε. Let I = {1, . . . , k}, and

let A ⊂ I be any subset. Denote by MA
P (θ) : Θ → R|A| the subvector of MP (θ) that contains the elements

of MP (θ) indexed by A. Then by Sard’s Theorem we have that the set of critical values for MA
P (θ) have

measure zero in R|A|. Denoting by εA the projection of ε onto R|A|, we have that:

N(A) := {ε ∈ Rk : εA is a critical value for MA
P (θ)},

has measure zero under Pε. Repeating the exercise for every A ⊆ I we have:

N :=
⋃
A⊆I

N(A),

has measure zero under Pε. Thus E \N has probability 1. Now take any ε ∈ E \N , and take A = Aε(θ, P ).

Then the rows of Gε(θ, P )—formed by the gradients {∇θPmj(W, θ)}j∈Aε(θ,P )—are linearly independent.

This completes the proof. �

This result shows that even if the initial moment conditions do not satisfy the LICQ implied by As-

sumption 2.3.3(ii), if we perturb the moment conditions slightly, then at any feasible value for the perturbed

conditions the LICQ will hold with probability 1. This illustrates that cases where Assumption 2.3.3 fails

are truly “knife-edge” cases. In the optimization literature, these results are referred to as genericity results,

since they show that “generic” (or Pε−almost all) convex programs satisfy properties like Assumption 2.3.3.

A similar analysis can be repeated for the case with both equality and inequality constraints by first con-

verting all equality constraints into two paired inequality constraints, and then choosing the support of the

perturbation parameter in a way to ensure that the two paired inequality constraints are “separated” with

probability 1.

An important caveat is that this analysis holds in the case when the probability measure P is fixed.

Indeed, we have been unable to construct an analogous perturbation analysis that can be used to justify

the LICQ uniformly over P, although we feel this will be a fruitful avenue for future research in partial

identification. Regardless, we feel that Proposition 2.4.1 helps to put the LICQ Assumption in perspective.

2.4.2 Empty Sets

In some cases the estimated identified set may be empty in finite samples even though the true DGP satisfies

the assumptions in this chapter. However, when the identified set is empty in finite sample it is possible to

“relax” the moment conditions to the point where the relaxed moment conditions have nonempty interior.

We might then perform our subvector inference procedure on this relaxed version of the identified set. If the

model is correctly specified, then this “relaxation” of the moment conditions can gradually be lifted. We

will summarize this procedure here.
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Consider the following relaxed versions of the convex programs (2.29) and (2.30):

Ψ`b
I (Pn, cn) := inf

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ cn, j = 1, . . . , k,

Ψub
I (Pn, cn) := sup

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ cn, j = 1, . . . , k.

For convenience, we will take the infimum over the empty set to be +∞ and the supremum over the empty

set to be −∞. Now define:6

c∗n := inf
{
cn ∈ [0,+∞) : Ψ`b

I (Pn, cn) < +∞
}
.

Then by definition the following programs have nonempty feasible sets:

Ψ`b
I (Pn, c∗n) := inf

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ c∗n + ε, j = 1, . . . , k, (2.46)

Ψub
I (Pn, c∗n) := sup

θ∈Θ
Pnψ(W, θ) s.t. Pnmj(W, θ) ≤ c∗n + ε, j = 1, . . . , k, (2.47)

where the extra ε ensures that the moment inequalities have nonempty interior, which is necessary although

not sufficient for Assumption 2.3.3(ii) to hold (see the discussion following Assumption 2.3.3). Now note

that if c∗n = o(n−1/2), and if Assumptions 2.3.1 - 2.3.6 are satisfied, then the value functions Ψ`b
I (Pn, c∗n) and

Ψub
I (Pn, c∗n) from (2.46) and (2.47) can be used in place of the value functions Ψ`b

I (Pn) and Ψub
I (Pn) from

(2.27) and (2.28).

This procedure is very similar to the idea of a “misspecification-robust identified set” recently introduced

by Andrews and Kwon (2019). Indeed, the relaxation parameter c∗n guarantees under our Assumptions that

the identified set for ψ0 will always be non-empty. Different variations on the notion of a “misspecification-

robust identified set” are also possible.7 If the relaxation parameter satisfies c∗n = o(n−1/2), then our

procedure remains a valid inference procedure for ψ0; if not, then the model is misspecified, but our procedure

remains valid for a “pseudo-true” value of ψ0 defined by the relaxed moment conditions. We refer readers

to Andrews and Kwon (2019) for a further discussion of this idea.

2.5 Simulation Evidence

To practically test the proposed the procedure, we performed Monte Carlo experiments on three different

economic examples. In particular, we consider two canonical partial identification examples—given by the

missing data problem from Example 1 and the linear regression example with interval-valued dependent

variable from Example 2—as well as a less canonical example, given by the problem of inference on coun-

terfactual policies in Example 4. For brevity in the main text, we have placed the missing data example,

and the interval-valued regression example in Appendix 2.B, and will only describe the DGP and results

for Example 4 here. However, as Appendix 2.B shows, the inference procedure also performed well in the

missing data and the interval-valued regression examples.

6Equivalently: c∗n := inf
{
cn ∈ [0,+∞) : ΨubI (Pn, cn) > −∞

}
.

7Indeed, our notion here differs from Andrews and Kwon (2019) in the sense that the choice of c∗n is more conservative, but
computationally simpler than the relaxation proposed in Andrews and Kwon (2019).
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2.5.1 Description

Recall Example 4 from Kasy (2016) on inference on counterfactual treatment policies. In that example,

we had gd(X) := E[Yd|X], which was assumed to be obtained from an initial study on the effect of some

treatment D, but is only partially identified and known to lie in the (estimated) set Gd. The policy maker

now wants to determine the effect of a treatment policy in a new population with distribution of covariates

given by P (X = x).

The policy maker compares two policies, A and B, which are defined by the conditional probability of

being assigned to treatment given X = x. In particular, policy A is associated with the conditional treat-

ment assignment probability P (DA = 1|X = x) and policy B is associated with the conditional treatment

assignment probability given by P (DB = 1|X = x). Let hAB(x) = P (DA = 1|X = x)− P (DB = 1|X = x).

Furthermore, let ψAB = E[Y A − Y B ], that is, the expected difference in outcomes under policies A and B.

Then the identified set for ψAB is given by:

ΨAB
`b (P ) = inf

(g0,g1)∈G0×G1

∑
x∈X

hAB(x) (g1(x)− g0(x))P (X = x), (2.48)

ΨAB
ub (P ) = sup

(g0,g1)∈G0×G1

∑
x∈X

hAB(x) (g1(x)− g0(x))P (X = x). (2.49)

To motivate the relevance and guide the construction of our simulation study, we can consider the case

study in Kasy (2016), in which the initial study to determine bounds on gd(·) was the Tennessee Star

experiment. The Tennessee Star experiment saw students randomized within schools to small and large

classrooms. The outcome in this experiment was student performance on standardized tests, in particular

for reading and math. While student assignment to small and large class sizes was random, compliance

was imperfect for a number of reasons. The study includes a variety of covariates, including indicators for

whether the student was female, black, or was enrolled to receive a free lunch (an indicator for poverty).

As in the Tennessee STAR experiment case study, we will consider a data generating process that includes

a binary instrument Z, a treatment variable D, potential outcomes Y0 and Y1, and a vector of covariates

X = (Xa, Xb). Since we will take both Xa and Xb as binary, it will be equivalent (and more notationally

beneficial) to see X as a scalar covariate that takes values in the set {x1, x2, x3, x4}. The instrument is

generated to satisfy Z ⊥⊥ (Y0, Y1), and the DGP for the instrument and treatment variable is given by:

Z ∼ Bernoulli(0.5)

D = 1{(2Z − 1) > max{c/
√
n, δ} · ε}, ε ∼ N(0, 1), and c ∈ {0, 1, 2}.

We will allow c ∈ {1, 10, 20} to vary across DGPs. While the precise values of c are chosen arbitrarily, varying

the values of c can be used to control the size of the identified set by changing the relationship between D

and Z. Indeed, if c = 0 and δ = 0, we have D = Z, and the conditional average treatment effect will be

point-identified. On the other hand, if c is very large then the dependence between Z and D is weak, and

the identified set for the conditional average treatment effect will be large. In the DGP we fix δ = 10−6 in

order to ensure the model is always partially identified, even as n→∞.

We restrict our outcome variable Y to be in the range Y := {1, 2, 3, 4, 5}. Returning to the Tennessee

STAR experiment example, this might correspond to quintiles of the standardized test distribution, or some

other mapping from test scores. The conditional distribution Y0|X is specified as follows:

Y0|X = x1 ∼ Categorical(5, p1 = 0.2, p2 = 0.2, p3 = 0.2, p4 = 0.2, p5 = 0.2),

Y0|X = x2 ∼ Categorical(5, p1 = 0.3, p2 = 0.25, p3 = 0.25, p4 = 0.1, p5 = 0.1),
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Y0|X = x3 ∼ Categorical(5, p1 = 0.3, p2 = 0.25, p3 = 0.25, p4 = 0.1, p5 = 0.1),

Y0|X = x4 ∼ Categorical(5, p1 = 0.4, p2 = 0.35, p3 = 0.25, p4 = 0, p5 = 0).

Treating the values in Y as analogous to test scores, we can say a few things about this DGP. First, individuals

with X = x1 are equally likely to obtain any test score in the range Y. However, individuals with X = x2

or X = x3 have the same test distribution, and are more likely than individuals with X = x1 to obtain a

lower score. Finally, individuals with X = x4 are more likely to obtain a worse test score than any other

subpopulation. With this in mind, the conditional distribution Y1|X is specified as follows:

Y1|X = x1 ∼ Categorical(5, p1 = 0.2, p2 = 0.2, p3 = 0.2, p4 = 0.2, p5 = 0.2),

Y1|X = x2 ∼ Categorical(5, p1 = 0.1, p2 = 0.1, p3 = 0.25, p4 = 0.25, p5 = 0.3),

Y1|X = x3 ∼ Categorical(5, p1 = 0.1, p2 = 0.1, p3 = 0.25, p4 = 0.25, p5 = 0.3),

Y1|X = x4 ∼ Categorical(5, p1 = 0, p2 = 0, p3 = 0.25, p4 = 0.35, p5 = 0.4).

Note that when specifying the conditional distribution for Y1|X, we have simply reversed the order of the

probabilities from the conditional distribution for Y0|X; in particular, if the probability vector parameterizing

the categorical distribution for Y0|X = x was p = (p1, p2, p3, p4, p5)T , then the probability vector parame-

terizing the categorical distribution for Y1|X = x is is given by p′ = (p5, p4, p3, p2, p1)T . The implications of

this DGP is that, on average, we do not expect individuals with X = x1 to lose or gain from treatment in

terms of improved test scores, whereas individuals in the populations X = x2, x3 or x4 will all see improved

test scores from treatment (with those with X = x4 benefiting the most on average). We assume that the

initial and target population distribution of covariates is given by:

Initial Distribution: P (X = x1) = 0.25, Target Distribution: P (X = x1) = 0.3,

P (X = x2) = 0.25, P (X = x2) = 0.3,

P (X = x3) = 0.25, P (X = x3) = 0.2,

P (X = x4) = 0.25, P (X = x4) = 0.2.

Note that in our simulations we will take draws from the target distribution, so that the policy-maker will

have sampling uncertainty arising from lack of perfect knowledge of the population covariate proportions.

Finally, in our setup the policy-maker compares the policies A and B represented by the following treatment

assignment rules:

P (DA = 1|X = x1) = 0, P (DB = 1|X = x1) = 0.5,

P (DA = 1|X = x2) = 0.75, P (DB = 1|X = x2) = 0.5,

P (DA = 1|X = x3) = 0.75, P (DB = 1|X = x3) = 0.5,

P (DA = 1|X = x4) = 1, P (DB = 1|X = x4) = 0.5.

In other words, policy A gives a highly unequal treatment assignment probability across covariate values,

whereas policy B represents a policy that is more egalitarian in the sense that the treatment assignment

probability does not depend on the covariate values. However, note that policy A assigns the highest

treatment assignment probability to individuals who are in covariate groups with the highest conditional

average treatment effect. In contrast, policy B assigns equal treatment assignment probability to all groups,

including the group represented by X = x1, which has zero conditional average treatment effect. Quick

computation shows that policy A, which assigns more weight to those who benefit from treatment, will be
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preferred to policy B.

For reference, according to this DGP the population values of the parameters of interest are given by the

following:

E[Y1 − Y0|X = x1] = 0, ψAB = 0.3675,

E[Y1 − Y0|X = x2] = 1.1,

E[Y1 − Y0|X = x3] = 1.1,

E[Y1 − Y0|X = x4] = 2.3.

The moment conditions used to bound the conditional average treatment effect come from Russell (2019). In

particular, for each fixed X = x the sharp set of constraints on the conditional distribution P (Y0 = y0, Y1 =

y1, D = d|X = x, Z = z) when Y0, Y1, X ⊥⊥ Z are derived in Russell (2019). For the sake of brevity we

will not discuss these constraints in detail here, although we will note that all the constraints are linear and

can be expressed in terms of the distribution of the observable variables (Y,D,X,Z) only. Letting P(x, z)

denote the sharp set of all conditional distributions py0,y1,d(x, z) := P (Y0 = y0, Y1 = y1, D = d|X = x, Z = z)

satisfying Y0, Y1, X ⊥⊥ Z, and noticing that:

g1(x)− g0(x) := E[Y1 − Y0|X = x] =
∑

y0,y1,d,z

(y1 − y0)py0,y1,d(x, z)P (Z = z),

we obtain:

ΨAB
`b (P ) = inf

py0,y1,d(x,z)∈P(x,z)

∑
x∈X

hAB(x)

 ∑
y0,y1,d,z

(y1 − y0)py0,y1,d(x, z)P (Z = z)

P (X = x), (2.50)

ΨAB
ub (P ) = sup

py0,y1,d(x,z)∈P(x,z)

∑
x∈X

hAB(x)

 ∑
y0,y1,d,z

(y1 − y0)py0,y1,d(x, z)P (Z = z)

P (X = x), (2.51)

which are also linear programs. The partially identified parameter vector py0,y1,d(x, z) contains 50 elements

for each fixed X = x and Z = z, so that in total the partially identified parameter vector has 400 elements.

While we recognize that there are likely simpler ways of constructing this bounding problem, the larger

dimension of the partially identified parameter vector serves as a useful illustration of the computational

benefit of our approach.

In all Monte Carlo exercises we take B = 1000 bootstrap samples for each experiment, and we implement

each experiment 1000 times to determine the simulated coverage probability. We also consider various sample

sizes n ∈ {100, 250, 500, 1000}. In each DGP, we also threshold the length of the identified set; i.e. we use

∆∗n = 1{∆n > bn}, with bn = (log(n))−1/2, rather than ∆n when computing the critical values from (2.42)

and (2.43). We find this thresholding helps to improve the coverage in finite sample in cases when the model

is close to point identification, and introduces at most a conservative distortion under the assumptions in

this chapter.

2.5.2 Results

The simulation results for the interval valued regression example are displayed in Table 2.1. Similar to the

Monte Carlo excercises for the missing data and interval-valued regressor examples in Appendix 2.B, the

coverage probability for the true parameter is slightly above nominal in most of the DGPs considered. This

results from the fact that often the true parameter lies interior to the identified set, as well as from the
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thresholding discussed at the beginning of this section. As the value of c increases, we see that the length

of the identified set increases since the effect of the instrument on selection becomes weaker. However, for

most of the DGPs considered our confidence set remain informative; in particular, given a reasonably small

sample size (∼ 500), the policy-maker is always able to conclude that policy A is significantly better than

policy B for any value of c we considered. This problem is slightly more computationally involved than

both the missing data example and interval valued regression considered in Appendix 2.B, but we still find

that the approximate time to compute a confidence set is only around 10 seconds.8 Compared to other

procedures this is extremely fast, especially since our partially identified parameter vector py0,y1,d(x, z) has

400 elements.

2.6 Conclusion

This chapter proposes a simple procedure for constructing confidence intervals for functionals of a partially

identified parameter vector. The procedure approximates the distribution of the upper and lower bounds of

the identified set for the functional of interest through a simple bootstrap procedure. In particular, we show

that if the problem is sufficiently regular, a “naive” bootstrap procedure can be used, where the researcher

(essentially) repeatedly solves a linear program, and computes confidence sets by taking appropriate quantiles

of the bootstrap distribution of the value functions. Uniform validity of this “naive” procedure is proven

by making connections to results in the Operations Research literature on stochastic programming, and in

particular by appealing to the notion of uniform Hadamard directional differentiability. The procedure is

found to be extremely computationally efficient, even when the parameter vector is very high-dimensional;

indeed, the parameter vector had 400 elements in the simulation exercise presented in the main text, and

a confidence set for a linear functional could still be constructed in about 10 seconds. The most important

condition for the validity of our procedure is found to be the existence and uniqueness of optimal solutions

and Lagrange multipliers, and we feel that the development of more primitive conditions to ensure these

conditions hold will be a research project worthy of further pursuit.

8All Monte Carlo exercises were run on a laptop computer with an Intel Core i7-8550U CPU.
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Appendix 2.A Proofs

Throughout this appendix we use the following notation: if Xn, X are maps in a metric space (D, d) then:

� Xn = oP(an) is used to denote uniform (over P) convergence in probability of the random element

|Xn/an| to 0; i.e. lim supn→∞ supP∈P P
∗
P (|Xn/an| > ε) = 0 for every ε > 0,

� Xn = OP(an) is used to denote uniform (over P) stochastic boundedness of the random element

|Xn/an|; i.e. the fact that for any ε > 0 there exists a a finiteM and anN such that supP∈P P
∗
P (|Xn/an| > M) <

ε for all n ≥ N .

We will also rely on the following facts which are not proven here, but for which references are provided.

Fact 2.A.1. Suppose that {Pn ∈ P+}∞n=1  P ∈ P. Under Assumption 2.3.1, 2.3.2 and 2.3.3 there exists

an N such that for all n ≥ N strong duality holds for Pn ∈ P+; that is, if L(θ, λ)(Pn) is the Lagrangian at

probability measure P , then

Ψ`b
I (Pn) = inf

θ∈Θ
sup
λ≥0
L(θ, λ)(Pn) = sup

λ≥0
inf
θ∈Θ
L(θ, λ)(Pn),

and

Ψub
I (Pn) = sup

θ∈Θ
inf
λ≤0
L(θ, λ)(Pn) = inf

λ≤0
sup
θ∈Θ
L(θ, λ)(Pn).

This result is called Lagrangian Duality in convex optimization; see, for example, Borwein and Lewis (2010)

Theorem 4.3.7. This follows since any sequence {Pn ∈ P+}∞n=1  P ∈ P must eventually lie in Pε, so that

Assumption 2.3.3 holds in the tails of any such sequence.

Before the next fact, some definitions:

Definition 2.A.1 (Upper Hemicontinuity). For metric spaces X and Y, a correspondence G : X → Y is

said to be upper hemicontinuous at x ∈ X if for every open subset S of Y with G(x) ⊆ S there exists a δ > 0

such that G (Bδ(x)) ⊆ S.

Definition 2.A.2 (Compact-Valued). For metric spaces X and Y, a correspondence G : X → Y is said to

be compact-valued if G(x) is a compact subset of Y for each x ∈ X .

Definition 2.A.3 (Closed at x). For metric spaces X and Y, a correspondence G : X → Y is said to be

closed at x if for any sequence {xn} and {yn} with xn → x and yn → y we have that y ∈ G(x) whenever

yn ∈ G(xn) for all n.

Fact 2.A.2 (Proposition E.2 in Ok (2007)). Let X and Y be two metric spaces and Γ : X → Y a correspon-

dence. If Γ is compact-valued and upper hemicontinuous at x ∈ X , then for any sequence {xm}∞m=1 ⊂ X
and {ym}∞m=1 ⊂ Y with xm → x and ym ∈ Γ(xm) for each m, there exists a subsequence {ymk}∞k=1 such that

ymk → y ∈ Γ(x).

Finally, Θ`b(P ) and Θub(P ) denote the set of optimal solutions to (2.27) and (2.28), and Λ`b(P ) and

Λub(P ) denote the set of Lagrange multipliers for (2.27) and (2.28).

2.A.1 Proof of Results in Main Text

Remark 2.A.1. The following proof follows similar steps to the proof of Theorem 7.24 in Shapiro et al.

(2009), which shows Hadamard directional differentiability. However, the proof here establishes that this

65



www.manaraa.com

property holds “uniformly” over P under the assumptions of Theorem 2.3.1. The proof of uniformity follows

namely from (i) the assumption hn → h in the sup norm (and thus uniformly) where h is an operator that

is uniformly continuous with respect to θ (the latter is provided by Lemma 2.A.5), (ii) boundedness of the

Lagrangian (given by Lemma 2.A.3) and (iii) continuity of the optimal solutions and Lagrange multipliers

(given by Lemma 2.A.2).

Proof of Theorem 2.3.1. We can focus on the lower bound, since the upper bound can be treated analogously.

Consider any converging sequences Pn  P ∈ P, {hn} ⊂ `∞(F) and {tn} ⊂ R+ with tn ↓ 0 and hn → h ∈
TP (F) such that Pn + tnhn ∈ P+ for all n ≥ 1. Recall the Lagrangian at a probability measure Pn is given

by:

L(θ, λ)(Pn) := Pnψ(W, θ) +

k∑
j=1

λjPnmj(W, θ), (2.52)

where λ := (λ1, . . . , λk)′ ∈ Rk+ is a vector of Lagrange multipliers. Denote the “unperturbed” and “per-

turbed” programs respectively as:

Ψ`b
I (Pn) := inf

θ∈Θ
sup
λ∈Rk+

L(θ, λ)(Pn), (2.53)

Ψ`b
I (Pn + tnhn) := inf

θ∈Θ
sup
λ∈Rk+

L(θ, λ)(Pn + tnhn), (2.54)

where Pn + tnhn is interpreted elementwise. By Fact 2.A.1 we have by Lemma 2.A.1 that there exists an N

such that for all n ≥ N :

Ψ`b
I (Pn) = inf

θ∈Θ
sup
λ∈Rk+

L(θ, λ)(Pn) = sup
λ∈Rk+

inf
θ∈Θ
L(θ, λ)(Pn), (2.55)

Ψ`b
I (Pn + tnhn) = inf

θ∈Θ
sup
λ∈Rk+

L(θ, λ)(Pn + tnhn) = sup
λ∈Rk+

inf
θ∈Θ
L(θ, λ)(Pn + tnhn). (2.56)

Lemma 2.A.1 implies there exists an optimal θ∗`b(Pn) for each n ≥ N . Now consider the sequence {θ∗`b(Pn)}∞n=1

with θ∗`b(Pn) optimal for each n ≥ N , and conclude that for all n ≥ N :

Ψ`b
I (Pn) = sup

λ∈Rk+
L (θ∗`b(Pn), λ) (Pn), (2.57)

Ψ`b
I (Pn + tnhn) ≤ sup

λ∈Rk+
L(θ∗`b(Pn), λ)(Pn + tnhn), (2.58)

where (2.57) follows from strong duality, and (2.58) follows from the fact that θ∗`b(Pn) is optimal for program

(2.53) but not necessarily program (2.54).

By Lemma 2.A.1, we have that there exists a optimal vector of Lagrange multipliers in (2.58) for n ≥ N .

Let {λ∗`b (Pn + tnhn)}∞n=1 be a sequence with λ∗`b (Pn + tnhn) optimal for each n ≥ N . For any such sequence,

note from (2.57) and (2.58) we have for all n ≥ N :

Ψ`b
I (Pn) ≥ L (θ∗`b(Pn), λ∗`b(Pn + tnhn)) (Pn), (2.59)
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Ψ`b
I (Pn + tnhn) ≤ L (θ∗`b(Pn), λ∗`b (Pn + tnhn)) (Pn + tnhn). (2.60)

Finally, also note that since hn → h ∈ TP (F) by assumption, we have that:

hn = h+ o(1). (2.61)

Thus, for all n ≥ N :

Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

≤ L (θ∗`b(Pn), λ∗`b (Pn + tnhn)) (Pn + tnhn)− L (θ∗`b(Pn), λ∗`b(Pn + tnhn)) (Pn) (from (2.59) and (2.60))

= tnhn,1ψ(W, θ∗`b(Pn)) +

k∑
j=1

λ∗`b,j (Pn + tnhn) tnhn,j+1mj(W, θ
∗
`b(Pn)) (by (2.52))

= tn

h1ψ(W, θ∗`b(Pn)) +

k∑
j=1

λ∗`b,j (Pn + tnhn)hj+1mj(W, θ
∗
`b(Pn))

+ o(tn), (by (2.61))

where the final line follows from uniform boundedness of the Lagrangian from Lemma 2.A.3(ii). Thus for

any sequence {θ∗`b(Pn)}:

lim sup
n→∞

Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

tn

≤ lim sup
n→∞

h1ψ(W, θ∗`b(Pn)) +

k∑
j=1

λ∗`b,j (Pn + tnhn)hj+1mj(W, θ
∗
`b(Pn))



= h1ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j (P )hj+1mj(W, θ
∗
`b(P )). (2.62)

The last line follows by convergence of Pn  P ∈ P and tn ↓ 0, by uniform continuity of h with respect

to θ from Lemma 2.A.5, and by convergence of the optimal solutions to a unique optimal solution (by

Assumptions 2.3.2 and 2.3.3). This latter fact follows from continuity of the optimal solutions and optimal

Lagrange multipliers, which follows from Lemma 2.A.2.

For the reverse inequality, recall the “unperturbed” and “perturbed” problems given in (2.53) and (2.54)

respectively. By Lemma 2.A.1 the set of optimal solutions to program (2.54) is nonempty for all n ≥ N .

Thus, let θ∗`b(Pn + tnhn) be a sequence of optimal solutions to program (2.54). Furthermore, by Lemma

2.A.1, the set of optimal Lagrange multipliers to program (2.53) is nonempty for all n ≥ N . Now note for

any λ∗`b(Pn) we have:

Ψ`b
I (Pn) ≤ L(θ∗`b(Pn + tnhn), λ∗`b(Pn))(Pn), (2.63)
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Ψ`b
I (Pn + tnhn) ≥ L(θ∗`b(Pn + tnhn), λ∗`b(Pn))(Pn + tnhn). (2.64)

It follows that for n ≥ N :

Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

≥ L(θ∗`b(Pn + tnhn), λ∗`b(Pn))(Pn + tnhn)− L(θ∗`b(Pn + tnhn), λ∗`b(Pn))(Pn) (by (2.63) and (2.64))

= tnhn,1ψ(W, θ∗`b(Pn + tnhn)) +

k∑
j=1

λ∗`b,j(Pn)tnhn,j+1mj(W, θ
∗
`b(Pn + tnhn)) (by (2.52))

= tn

h1ψ(W, θ∗`b(Pn + tnhn)) +

k∑
j=1

λ∗`b,j(Pn)hj+1mj(W, θ
∗
`b(Pn + tnhn))

+ o(tn), (by (2.61))

where the final line follows from uniform boundedness of the Lagrangian from Lemma 2.A.3(ii). Thus,

lim inf
n→∞

Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

tn

≥ lim inf
n→∞

h1ψ(W, θ∗`b(Pn + tnhn)) +

k∑
j=1

λ∗`b,j(Pn)hj+1mj(W, θ
∗
`b(Pn + tnhn))



= h1ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j(P )hj+1mj(W, θ
∗
`b(P )). (2.65)

The last line follows by convergence of Pn  P ∈ P and tn ↓ 0, by uniform continuity of h with respect

to θ from Lemma 2.A.5, and by convergence of the optimal solutions to a unique optimal solution (by

Assumptions 2.3.2 and 2.3.3). This latter fact follows from continuity of the optimal solutions and optimal

Lagrange multipliers, which follows from Lemma 2.A.2.

Finally, combining inequalities we obtain:

lim
n→∞

Ψ`b
I (Pn + tnhn)−Ψ`b

I (Pn)

tn
= h1ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j(P )hj+1mj(W, θ
∗
`b(P )). (2.66)

This completes the proof.

�

Proof of Lemma 2.3.1. Let Gn,Pn =
√
n(Pn − Pn). By Lemma D.1(2) in Bugni et al. (2015) we have that,

under Assumptions 2.3.1 and 2.3.5, F is Donsker and pre-Gaussian, both uniformly over P. By Theorem

2.8.7 in Van Der Vaart and Wellner (1996), we have that Assumption 2.3.1 and 2.3.5 imply that Gn,Pn  GP
in `∞(F), which is a tight Gaussian process with sample paths that are almost all uniformly continuous. Let

G̃P be a version of GP with all sample paths uniformly continuous. Let D = `∞(F), D0 = TP (F), E = R,

and define:

Dn = {h : Pn + n−1/2h ∈ P+}.
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Then Dn ⊂ D and D0 ⊂ D. Now consider the maps gn : Dn → E and g : D0 → E defined as:

gn(hn) :=
√
n
{

Ψ`b
I

(
Pn + n−1/2hn

)
−Ψ`b

I (Pn)
}
, hn ∈ Dn, (2.67)

g(h) := (Ψ`b
I )′P (h), h ∈ D. (2.68)

By Theorem 2.3.1, if hn → h with hn ∈ Dn for every n and h ∈ D0, then gn(hn)→ g(h), where g : D0 → D.

Now note that Gn,Pn ∈ Dn. Using the fact that G̃P is a tight (and thus separable) Borel element with values

in D0, combined with the extended continuous mapping theorem (Theorem 1.11.1 in Van Der Vaart and

Wellner (1996)), we conclude that:

√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) (Ψ`b

I )′P (G̃P ),

as desired. An identical proof can be completed for the upper bound. Thus, this completes the proof. �

Proof of Lemma 2.3.2. Let G̃P be a version of GP with all sample paths uniformly continuous. Let D =

`∞(F), D0 = TP (F), E = R, and define:

Dn = {h ∈ D : Pn + n−1/2h ∈ P+},

Then Dn ⊂ D and D0 ⊂ D. Now consider the maps gn : Dn → E and g : D0 → E defined as:

gn(hn) :=
√
n
(

Ψ`b
I

(
Pn + n−1/2hn

)
−Ψ`b

I (Pn)
)
, hn ∈ Dn, (2.69)

g(h) := (Ψ`b
I )′P (h), h ∈ D. (2.70)

By Theorem 2.3.1, if hn → h with hn ∈ Dn for every n and h ∈ D0, then gn(hn)→ g(h), where g : D0 → D.

Now note that Gbn ∈ Dn, and by assumption Gbn|{Wi}ni=1  G̃P uniformly over P. Using the fact that G̃P
is a tight (and thus separable) Borel element with values in D0, combined with the extended continuous

mapping theorem (Theorem 1.11.1 in Van Der Vaart and Wellner (1996)), we conclude that:

√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn))|{Wi}ni=1  (Ψ`b

I )′P (G̃P ),

as desired. An identical proof can be completed for the upper bound. Thus, this completes the proof.

�

Proof of Theorem 2.3.2. By definition there exists a sequence (ψn, Pn) ∈ {(ψ, P ) : ψ ∈ ΨI(P ), P ∈ P}
satisfying:

lim inf
n→∞

inf
{(ψ,P ): ψ∈ΨI(P ), P∈P}

P
(
ψ ∈ Cψn (1− α)

)
= lim inf

n→∞
Pn
(
ψn ∈ Cψn (1− α)

)
,

where {ψn} is a sequence with ψn ∈ [Ψ`b
I (Pn),Ψub

I (Pn)] for each n. For such a sequence, there exists a

convergent subsequence indexed by n′ such that:

lim inf
n→∞

Pn
(
ψn ∈ Cψn (1− α)

)
= lim
n′→∞

Pn′
(
ψn′ ∈ Cψn′(1− α)

)
.

Under our assumptions P is closed and uniformly tight; thus, by extracting a further subsequence if necessary,

we can assume that Pn′  P for some P ∈ P. For the remainder of the proof we will argue along
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this subsequence, and abusing notation we will refer to this subsequence by n rather than n′. Since by

construction we have ψn ∈ [Ψ`b
I (Pn),Ψub

I (Pn)] for each n, it suffices to establish that:

lim
n→∞

Pn
(
Ψ`b
I (Pn) ∈ Cψn (1− α)

)
≥ 1− α, (2.71)

lim
n→∞

Pn
(
Ψub
I (Pn) ∈ Cψn (1− α)

)
≥ 1− α. (2.72)

We can focus on (2.71) since (2.72) can be treated analogously. We have:

Pn
(
Ψ`b
I (Pn) ∈ Cψn (1− α)

)
= Pn

(
Ψ`b
I (Pn)− Ψ̂`b

α /
√
n ≤ Ψ`b

I (Pn) ≤ Ψub
I (Pn) + Ψ̂ub

α /
√
n
)

= Pn

(√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pn)−Ψ`b
I (Pn))

)

= Pn

(√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pn)−Ψub
I (Pn)) +

√
n∆(Pn)

)
. (2.73)

Decomposing this probability we have:

Pn

(√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pn)−Ψub
I (Pn)) +

√
n∆(Pn)

)

= P bn

(√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pbn)−Ψub
I (Pn)) +

√
n∆(Pn)

)

+

[
Pn

(√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pn)−Ψub
I (Pn)) +

√
n∆(Pn)

)
− Pn

(
(Ψ`b

I )′P (GP ) ≤ Ψ̂`b
α , −Ψ̂ub

α ≤ (Ψub
I )′P (GP ) +

√
n∆(Pn)

)]
(2.74)

+

[
Pn

(
(Ψ`b

I )′P (GP ) ≤ Ψ̂`b
α , −Ψ̂ub

α ≤ (Ψub
I )′P (GP ) +

√
n∆(Pn)

)
− Pn

(
(Ψ`b

I )′P (GP ) ≤ Ψ̂`b
α , −Ψ̂ub

α ≤ (Ψub
I )′P (GP ) +

√
n∆(Pn)

)]
(2.75)

+

[
Pn

(
(Ψ`b

I )′P (GP ) ≤ Ψ̂`b
α , −Ψ̂ub

α ≤ (Ψub
I )P (GP ) +

√
n∆(Pn)

)
− P bn

(√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pbn)−Ψub
I (Pn)) +

√
n∆(Pn)

)]
. (2.76)

Note by construction we will have for all n:

P bn

(√
n(Ψ`b

I (Pbn)−Ψ`b
I (Pn)) ≤ Ψ̂`b

α , −Ψ̂ub
α ≤

√
n(Ψub

I (Pbn)−Ψub
I (Pn)) +

√
n∆(Pn)

)
≥ 1− α,

so that it suffices to show that the terms (2.74), (2.75) and (2.76) converge to non-negative values. First
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consider (2.74). By Lemma 2.3.1 we have that:

√
n(Ψ`b

I (Pn)−Ψ`b
I (Pn)) (Ψ`b

I )′P (GP ). (2.77)

Assumptions 2.3.1 and 2.3.5 ensure the objective function (when it is a non-trivial function of w ∈ W) and

moment functions are uniformly Donsker over P. Thus, when combined with uniform boundedness of the

Lagrange multipliers from Lemma 2.A.3, this ensures continuity of the distribution of (Ψ`b
I )′P (GP ) at its α

quantile and (Ψub
I )′P (GP ) at its 1 − α quantile. Thus, convergence of (2.74) to zero follows from (2.77),

Theorem 1.3.4(vi) in Van Der Vaart and Wellner (1996), and continuity of the distributions of (Ψ`b
I )′P (GP )

and (Ψub
I )′P (GP ).

Next, note from Lemma 2.A.4 that ΨI(Pn) is Hausdorff consistent for ΨI(P ) over {Pn ∈ P}∞n=1, which

implies consistency of ∆(Pn) for ∆(P ). Also note that Assumptions 2.3.2 and 2.3.3 imply that ∆(P ) > 0

for all P ∈ P, so that
√
n∆(Pn) → ∞. However, ∆(Pn) = ∆(P ) + oPn(1) by Lemma 2.A.4, so that (2.75)

converges to zero, as desired.

Finally, (2.76) converges to zero w.p.a. 1, which follows from bootstrap consistency over the sequence

{Pn ∈ P}∞n=1 from Lemma 2.3.2, and again from continuity of the distributions of (Ψ`b
I )′P (GP ) and (Ψub

I )′P (GP )

described above.

�

2.A.2 Proofs of Additional Results

Lemma 2.A.1. Under Assumptions 2.3.1 - 2.3.3, ΘI(P ), Θ`b(P ), Θub(P ), Λ`b(P ) and Λub(P ) are nonempty

for every P ∈ P. Furthermore, if {Pn}∞n=1 is any sequence weakly converging to P ∈ P, then there exists an

N such that ΘI(Pn), Θ`b(Pn), Θub(Pn), Λ`b(Pn) and Λub(Pn) are nonempty for all n ≥ N .

Proof. Nonemptiness of ΘI(P ), Θ`b(P ), Θub(P ) follows from Assumption 2.3.1. Nonemptiness of Λ`b(P )

and Λub(P ) follows from 2.3.3(ii) and Wachsmuth (2013) Theorems 1 and 2.

The second claim can be established from 2.3.3(ii) and Wachsmuth (2013) Theorems 1 and 2 if we

can show there exists an N such that ΘI(Pn) is nonempty for all n ≥ N . This follows immediately from

Assumption 2.3.3(i) and the definition of convergence of probability measures used in this chapter. �

Lemma 2.A.2. Under Assumptions 2.3.1, 2.3.2, and 2.3.3, we have:

(a) θ∗`b(P ) and θ∗ub(P ) are continuous at any P ∈ P.

(b) λ∗`b(P ) and λ∗ub(P ) are continuous at any P ∈ P.

(c) Ψ`b
I (P ) and Ψub

I (P ) are continuous at any P ∈ P.

Proof. Let ||x − y||Rk+ = || arctan(x) − arctan(y)||, where || · || is the euclidean norm. Note that (Θ, || · ||),

(Rk+, || · ||Rk+) and (P+, dBL) are all metric spaces. Focus first on the lower bound program in (2.27). Take

any P ∈ P. Define:

ΘI(Pn) := {θ ∈ Θ : Pnmj(W, θ) = 0, j = 1, . . . , r1, Pnmj(W, θ) ≤ 0, j = r1 + 1, . . . , r1 + r2}.

By Lemma 2.A.1, for any sequence Pn  P ∈ P (possibly with Pn ∈ P+) we have that there exists an

N such that ΘI(Pn) is nonempty for all n ≥ N . By Assumption 2.3.1(i), ΘI(·) is also a compact-valued

correspondence for all n ≥ N . Recall the Lagrangian for problem (2.27):

L(θ, λ)(P ) := Pψ(W, θ) +

k∑
j=1

λjPmj(W, θ).
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By Assumption 2.3.2, L(θ, λ)(P ) is continuous in (θ, λ, P ). Define:

Θ∗(λ, P ) := arg min{L(θ, λ, P ) : θ ∈ ΘI(P )},

L∗θ(λ, P ) := min{L(θ, λ, P ) : θ ∈ ΘI(P )}.

Note that Θ∗(λ, P ) 6= ∅ and L∗θ(λ, P ) > −∞ by Lemma 2.A.1. By the Theorem of the Maximum (Ok

(2007), p. 306) we have that Θ∗(λ, P ) is compact-valued, upper-hemicontinuous, and closed, and the profiled-

Lagrangian L∗θ(λ, P ) is continuous in (λ, P ). Now define:

Λ∗θ(P ) := arg max{L∗θ(λ, P ) : λ ∈ Rk+},

L∗θ,λ(P ) := max{L∗θ(λ, P ) : λ ∈ Rk+}.

Note that Λ∗θ(P ) 6= ∅ and L∗θ,λ(P ) <∞ by Lemma 2.A.1. Applying the Theorem of the Maximum again, we

have that Λ∗θ(P ) is compact-valued, upper-hemicontinuous, and closed, and the profiled-Lagrangian L∗θ,λ(P )

is continuous in P . Similarly, define:

Λ∗(θ, P ) := arg max{L(θ, λ, P ) : λ ∈ Rk+},

L∗λ(θ, P ) := max{L(θ, λ, P ) : λ ∈ Rk+},

Θ∗λ(P ) := arg min{L∗λ(θ, P ) : θ ∈ ΘI(P )},

L∗λ,θ(P ) := min{L∗λ(θ, P ) : θ ∈ ΘI(P )}.

I.e. reverse the order of profiling of the Lagrangian with respect to λ and θ. Note this can be done by

strong duality (Fact 2.A.1) without affecting the optimal solution sets. Applying Lemma 2.A.1 as above,

we conclude that Λ∗(θ, P ) 6= ∅, L∗λ(θ, P ) > −∞, Θ∗λ(P ) 6= ∅, and L∗λ,θ(P ) < ∞. Applying the Theorem of

the Maximum sequentially as above, we conclude that Θ∗λ(P ) is compact-valued, upper-hemicontinuous, and

closed, and the profiled-Lagrangian L∗λ,θ(P ) is continuous in P . Finally, by strong duality (Fact 2.A.1) we

conclude Ψ`b
I (P ) = L∗θ,λ(P ) = L∗λ,θ(P ), Λ`b(P ) = Λ∗θ(P ), and Θ`b(P ) = Θ∗λ(P ). By Assumption 2.3.3, all of

these sets are singletons. Repeating the excercise for the upper bound program, the proof is complete. �

Lemma 2.A.3. Under Assumptions 2.3.1, 2.3.2, 2.3.3 and 2.3.4,

(i) There exists constants L`b, Lub <∞ such that:

sup
P∈Pε

||λ∗`b(P )|| ≤ L`b, (2.78)

sup
P∈Pε

||λ∗ub(P )|| ≤ Lub. (2.79)

I.e. the Lagrange multipliers are uniformly bounded over P in both the lower bound and upper bound

programs.
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(ii) There exist constants C`b, Cub <∞ such that:

sup
P∈Pε

∣∣∣∣∣∣ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j(P )mj(W, θ
∗
`b(P ))

∣∣∣∣∣∣ ≤ C`b, (2.80)

sup
P∈Pε

∣∣∣∣∣∣ψ(W, θ∗ub(P )) +

k∑
j=1

λ∗ub,j(P )mj(W, θ
∗
ub(P ))

∣∣∣∣∣∣ ≤ Cub. (2.81)

I.e. the Lagrangian is uniformly bounded in both the lower bound and upper bound programs.

Proof. Part (i): We will focus on (2.78) since (2.79) follows analogously. By Assumption 2.3.2 and 2.3.3, we

have the KKT conditions:

∇θPm(W, θ∗`b(P ))Tλ∗`b(P ) = −∇θPψ(W, θ∗`b(P ))T ,

where ∇θPm(W, θ∗`b(P )) is the (r1 + r2) × dθ Jacobian matrix for the moment conditions. Let B denote

the index set for the active constraints. Now let λB(P ) denote the subvector of λ∗`b(P ) corresponding to the

active constraints. Then clearly:

∇θPm(W, θ∗`b(P ))Tλ∗`b(P ) = G(θ∗`b(P ), P )TλB(P ) = −∇θPψ(W, θ∗`b(P ))T .

Pre-multiplying by G(θ∗`b(P ), P ) and inverting (made possible by Assumption 2.3.3(ii)) we obtain:

λB(P ) = −
[
G(θ∗`b(P ), P )G(θ∗`b(P ), P )T

]−1
G(θ∗`b(P ), P )∇θPψ(W, θ∗`b(P ))T .

Denote:

A1(P ) := −
[
G(θ∗`b(P ), P )G(θ∗`b(P ), P )T

]−1
, (2.82)

A2(P ) := G(θ∗`b(P ), P )∇θPψ(W, θ∗`b(P ))T . (2.83)

Now note:

sup
P∈Pε

||A1(P )||2 ≤
1√
κ
, (by Assumption 2.3.3),

sup
P∈Pε

||A2(P )|| ≤
√
κ · L`b, (by Assumption 2.3.4),

where || · ||2 denotes the 2−matrix norm and L`b <∞ is some constant. Then:

sup
P∈Pε

||λB(P )|| = sup
P∈Pε

||A1(P )A2(P )||

= sup
P∈Pε

||A1(P )A2(P )||F

≤ sup
P∈Pε

||A1(P )||2||A2(P )||F

≤
(

sup
P∈Pε

||A1(P )||2
)(

sup
P∈Pε

||A2(P )||F
)

≤ L`b,

where || · ||F denotes the Frobenius norm. After some transformation, this upper bound is also sufficient for
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the arctan norm, and completes the proof of the first part.

Part (ii): We will focus on (2.80) since (2.81) follows analogously. By Assumption 2.3.1(v) there exists

a function F (w) such that supθ∈Θ ||f(w, θ)|| ≤ ||F (w)|| for every w ∈ W, and such that F (w) is uniformly

bounded. Let CF <∞ be a positive constant satisfying ||F (w)|| ≤ CF for all w ∈ W. Then:

sup
P∈Pε

∣∣∣∣∣∣ψ(W, θ∗`b(P )) +

k∑
j=1

λ∗`b,j(P )mj(W, θ
∗
`b(P ))

∣∣∣∣∣∣ ≤ sup
P∈Pε

||F (w)|| · ||λ∗`b(P )||

≤ CFL`b,

where the first inequality follows from Cauchy-Schwarz, and the last inequality follows from part (i). Thus,

taking C`b = CFL`b the proof is complete. �

Lemma 2.A.4. Under Assumptions 2.3.1-2.3.5, we have that,

(i) dH(ΘI(Pn),ΘI(P )) = OP(n−1/2).

(ii) dH(ΨI(Pn),ΨI(P )) = oP(1).

(iii) For any ε > 0,

lim sup
n→∞

sup
P∈P

P ∗P (||θ∗`b(Pn)− θ∗`b(P )|| > ε) = 0, (2.84)

and the analogous result for θ∗ub(·).

(iv) For any ε > 0,

lim sup
n→∞

sup
P∈P

P ∗P
(
||λ∗`b(Pn)− λ∗`b(P )||Rk > ε

)
= 0. (2.85)

and the analogous result for λ∗ub(·).

Proof of Lemma 2.A.4. Part (i): We follows closely the proof of Theorem 4.3(II) in Kaido et al. (2019a).

Define the set:

Θγ
I (P ) :=

{
θ ∈ Θ : max

r1+1≤j≤r1+r2
Pmj(W, θ) ≤ γ, Pmj(W, θ) = 0, j = 1, . . . , r1

}
,

for γ ∈ R. First note that by Lemma D.1 in Bugni et al. (2015) Assumption 2.3.5 implies that F is uniformly

Donsker. In particular, we have that ||Gn,P ||F = OP(1). This implies:

sup
θ∈Θ−εnI (P )

√
nmax

j
|Pnmj(W, θ)|+ ≤ sup

θ∈Θ−εnI (P )

∑
j

√
n|Pnmj(W, θ)|+

= sup
θ∈Θ−εnI (P )

∑
j

|Gn,Pmj(W, θ) +
√
nPmj(W, θ)|+

≤ r1|OP(1)|+ r2|OP(1)−
√
nεn|+,

from which we conclude that Θ−εnI (P ) ⊆ ΘI(Pn) w.p.a. 1 for εn = OP(n−1/2). Furthermore, by Assumption

2.3.5(iv) we can choose δ(εn) > 0 such that:

inf
θ∈Θ\ΘεnI (P )

√
nmax

j
|Pnmj(W, θ)|+

= inf
θ∈Θ\ΘεnI (P )

max
j
|Gn,Pmj(W, θ) +

√
nPmj(W, θ)|+
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≥ inf
θ∈Θ\ΘεnI (P )

1

J

∑
j

|Gn,Pmj(W, θ) +
√
nPmj(W, θ)|+

≥ inf
θ∈Θ\ΘεnI (P )

1

J

[
(J − 1) · 0 + |OP(1) +

√
nC min{δ(εn), d(θ,ΘI(P ))}|+

]
= inf
θ∈Θ\ΘεnI (P )

1

J
|OP(1) +

√
nC min{δ(εn), d(θ,ΘI(P ))}|+,

from which we conclude that ΘI(Pn) ∩ (Θ \Θεn
I (P )) = ∅ w.p.a. 1 for εn = OP(n−1/2) (from the first line).

Note that this concludes the proof of part (i).

Part (ii): It suffices to show consistency of the upper and lower bounds; i.e. that |Ψ`b
I (Pn)−Ψ`b

I (P )| = oP(1)

and that |Ψub
I (Pn) − Ψub

I (P )| = oP(1). We will focus on the lower bounds, since the upper bound proof is

symmetric. First note that since ψ(W, θ) is continuous with respect to θ by Assumption 2.3.2, and that Θ

is compact by Assumption 2.3.1(i), we have that ψ(W, θ) is uniformly continuous (w.r.t. θ) on Θ. Thus, for

every ε > 0 there exists a δ(ε) > 0 such that |Pnψ(W, θ)− Pnψ(W, θ′)| < ε whenever ||θ − θ′|| < δ(ε).

Now note that:

|Ψ`b
I (Pn)−Ψ`b

I (P )| =
∣∣∣∣ min
θ∈ΘI(Pn)

Pnψ(W, θ)− min
θ∈ΘI(P )

Pψ(W, θ)

∣∣∣∣
≤
∣∣∣∣ min
θ∈ΘI(Pn)

Pnψ(W, θ)− min
θ∈ΘI(P )

Pnψ(W, θ)

∣∣∣∣+

∣∣∣∣ min
θ∈ΘI(P )

Pnψ(W, θ)− min
θ∈ΘI(P )

Pψ(W, θ)

∣∣∣∣
≤ sup
||θ−θ′||≤dH(ΘI(Pn),ΘI(P ))

|Pnψ(W, θ)− Pnψ(W, θ′)|+ sup
θ∈ΘI(P )

|Pnψ(W, θ)− Pψ(W, θ)| .

It suffices to show the two terms in the last line of the previous array converge to zero in probability uniformly.

Note that by part (i) of this Lemma, we have dH(ΘI(Pn),ΘI(P )) = oP(1). Thus by uniform continuity of

Pnψ(W, θ):

lim sup
n→∞

sup
P∈P

P ∗P

(
sup

||θ−θ′||≤dH(ΘI(Pn),ΘI(P ))

|Pnψ(W, θ)− Pnψ(W, θ′)| > ε

)
= 0.

Also, by the uniform Donsker property:

sup
θ∈ΘI(P )

|Pnψ(W, θ)− Pψ(W, θ)| ≤ sup
θ∈Θ
|Pnψ(W, θ)− Pψ(W, θ)| = oP(1).

This completes the proof.

Part (iii) + (iv): Using Lemma 2.A.3, we can restrict λ to lie in the set Λ := {λ : ||λ|| ≤ max{L`b, Lub}}.
Fix any ε, η > 0. By the uniform Donsker property we have:

lim sup
n→∞

sup
P∈P

sup
f∈F
||Pn − P ||F = 0,

which implies the following inequalities hold w.p.a. 1:

L(θ∗`b(Pn), λ∗`b(Pn))(P ) < L(θ∗`b(Pn), λ∗`b(Pn))(Pn) + ε/3,

L(θ∗`b(P ), λ∗`b(Pn))(Pn) < L(θ∗`b(P ), λ∗`b(Pn))(P ) + ε/3,

L(θ∗`b(Pn), λ∗`b(Pn))(P ) > L(θ∗`b(Pn), λ∗`b(Pn))(Pn)− η/3,

L(θ∗`b(Pn), λ∗`b(P ))(Pn) > L(θ∗`b(Pn), λ∗`b(P ))(P )− η/3.
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Furthermore, by optimality of θ∗`b(Pn) and λ∗`b(Pn) we have:

L(θ∗`b(Pn), λ∗`b(Pn))(Pn) < L(θ∗`b(P ), λ∗`b(Pn))(Pn) + ε/3,

L(θ∗`b(Pn), λ∗`b(Pn))(Pn) > L(θ∗`b(Pn), λ∗`b(P ))(Pn)− η/3.

Combining these inequalities we obtain w.p.a. 1:

L(θ∗`b(Pn), λ∗`b(Pn))(P ) < L(θ∗`b(P ), λ∗`b(Pn))(P ) + ε ≤ L(θ∗`b(P ), λ∗`b(P ))(P ) + ε,

L(θ∗`b(Pn), λ∗`b(Pn))(P ) > L(θ∗`b(Pn), λ∗`b(P ))(P )− η ≥ L(θ∗`b(P ), λ∗`b(P ))(P )− η.

Now let Bθ and Bλ be any open balls around θ∗`b(P ) and λ∗`b(P ), respectively, and set:

ε = inf
Θ∩Bcθ

L(θ, λ∗`b(P ))(P )− L(θ∗`b(P ), λ∗`b(P ))(P ),

η = L(θ∗`b(P ), λ∗`b(P ))(P )− sup
Λ∩Bcλ

L(θ∗`b(P ), λ)(P ).

Note by Assumption 2.3.3, we have that the optimal solutions and Lagrange multipliers are unique, so that

ε, η > 0. Combining with the results above we conclude that w.p.a. 1:

sup
Λ∩Bcλ

L(θ∗`b(P ), λ)(P ) < L(θ∗`b(Pn), λ∗`b(Pn))(P ) < inf
Θ∩Bcθ

L(θ, λ∗`b(P ))(P ).

Furthermore at least one of the inequalities in the previous display is violated if either θ∗`b(Pn) /∈ Bθ or

λ∗`b(Pn) /∈ Bλ, which concludes the proof. �

Lemma 2.A.5. Under Assumptions 2.3.1 and 2.3.5:

(i) For every ε > 0 there exists a δ > 0 such that ||θ − θ′|| < δ implies ρP (θ, θ′) < ε for all P ∈ P.

(ii) Any function h ∈ `∞(F) uniformly continuous in the sup-norm with respect to ρP is uniformly contin-

uous in the sup-norm with respect to || · ||.

Proof. Part (i): Recall that under Assumption 2.3.5 the semimetric ρP satisfies:

lim
δ↓0

sup
||(θ1,θ′1)−(θ2,θ′2)||<δ

sup
P∈P
|ρP (θ1, θ

′
1)− ρP (θ2, θ

′
2)| = 0.

Now take (θ2, θ
′
2) = (θ′1, θ

′
1) and obtain:

lim
δ↓0

sup
||θ1−θ′1||<δ

sup
P∈P

ρP (θ1, θ
′
1) = 0.

Thus, we conclude for any ε > 0 there exists a δ > 0 such that:

sup
||θ1−θ′1||<δ

sup
P∈P

ρP (θ1, θ
′
1) < ε.

In other words:

{θ, θ′ ∈ Θ : ||θ − θ′|| < δ} ⊆ {θ, θ′ ∈ Θ : ρP (θ, θ′) < ε}.
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Part (ii): By uniform continuity of h we have for any η > 0, there exists a ε(η, P ) > 0 such that:

sup
ρP (θ,θ′)<ε(η,P )

||hf(w, θ)− hf(w, θ′)|| < η.

However, for any such ε(η, P ) > 0, by Part (i) there exists a δ(ε(η, P ))) > 0 such that:

{θ, θ′ ∈ Θ : ||θ − θ′|| < δ} ⊆ {θ, θ′ ∈ Θ : ρP (θ, θ′) < ε}.

We conclude that for any η > 0 there exists a δ(η, P ) > 0 such that:

sup
||θ−θ′||<δ(η,P )

||hf(w, θ)− hf(w, θ′)|| ≤ sup
ρP (θ,θ′)<ε(η,P )

||hf(w, θ)− hf(w, θ′)|| < η,

which completes the proof. �

Appendix 2.B Further Simulation Evidence

In addition to the Monte Carlo experiment performed in the main text, we now present Monte Carlo excercises

for two canonical partial identification examples given by the missing data problem from Example 1 and

the linear regression example with interval-valued dependent variable from Example 2. In all Monte Carlo

exercises we take B = 1000 bootstrap samples for each experiment, and we implement each experiment 1000

times to determine the simulated coverage probability. In each DGP, we also threshold the length of the

identified set; i.e. we use ∆∗n = 1{∆n > bn}, with bn = (log(n))−1/2, rather than ∆n when computing the

critical values from (2.42) and (2.43). As mentioned in the main text, we find this thresholding helps to

improve the coverage in finite sample in cases when the model is close to point identification, and introduces

at most a conservative distortion under the assumptions in this chapter.

2.B.1 Missing Data Example

Description

Recall that in the missing data example the researcher observes a sample {YiDi, Di}ni=1. In the Monte

Carlo experiments we assume that Yi ∈ Y = {1, 2, 3, 4, 5} and Di ∈ {0, 1}. The parameter of interest is the

unconditional average outcome:

ψ(θ) =
∑

d∈{0,1}

∑
y∈Y

y · θyd, θyd = P (Y = y,D = d).

The constraints imposed by the observed distribution P (Y D,D) on the latent distribution P (Y,D) are given

by:

P (Y D = y,D = 1) = P (Y = y,D = 1), ∀y ∈ Y, (2.86)

P (Y D = 0, D = 0) =
∑
y∈Y

P (Y = y,D = 0). (2.87)

The identified set for ψ is given by ΨI(P ) = [Ψ`b
I (P ),Ψub

I (P )], and can be obtained by solving the problems:

Ψ`b
I (P ) = min

θ∈ΘI(P )
ψ(θ), Ψub

I (P ) = max
θ∈ΘI(P )

ψ(θ), (2.88)
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where ΘI(P ) is the set of probability vectors satisfying the constraints (2.86) and (2.87). In the Monte Carlo

exercise we take n ∈ {100, 250, 500, 1000}, and specify the DGP as:

P (Y = y,D = 1) =
1

5

(
1−max

{
c√
n
, δ

})
, P (Y = y,D = 0) =

1

5
max

{
c√
n
, δ

}
, ∀y ∈ Y,

for c ∈ {0.1, 1, 2}, and for some small δ > 0 (we take δ = 10−6).9 Note this corresponds to a DGP where

ψ0 = 3, which will always be partially identified. Notice that all constraints on the identified set can be

expressed Aθ − b = 0, where:

θ =



θ10

...

θ50

θ11

...

θ51


, A =

 ι′
(1×5)

0
(1×5)

0
(5×5)

I
(5×5)

 , b =



P (D = 0)

P (Y = 1, D = 1)

P (Y = 2, D = 1)

P (Y = 2, D = 1)

P (Y = 4, D = 1)

P (Y = 5, D = 1)


,

where ι denotes a vector of 1’s, and I denotes the identity matrix.

Results

The simulation results for the missing data example are displayed in Table 2.2. As is expected under partial

identification of the parameter ψ0, the coverage probability for the true parameter is slightly above nominal.

In particular, this results from the fact that often the true parameter lies interior to the identified set. Note

this also occurs because of the thresholding discussed at the beginning of this section, which will introduce

a slight conservative distortion under our assumptions. As the value of c increases, we see that the length

of the identified set increases due to the fact that the missing data probability is increasing. However, in

all of the DGPs considered our confidence sets remain informative. The linear programming formulation of

this problem also ensures that the confidence set can be computed very efficiently; the approximate time to

compute a confidence set was typically below 4 seconds.

2.B.2 Interval Valued Regression

Description

Recall the example of linear regression with interval-valued dependent variable. We have Y = Xθ+ ε, where

X ∈ Rd with R points of support, and values of Y are never observed, although we observe realizations of

two random variables Y ∗ and Y∗ satisfying P (Y∗ ≤ Y ≤ Y ∗) = 1. The objective is then to perform inference

for the subvector θ1 of θ given that researcher observes a sample {Y ∗i , Y∗i, Xi}ni=1. Recall the identified set

is given by:

ΘI(P ) := {θ : E[Y∗|X = xr]− xTr θ ≤ 0, xTr θ − E[Y ∗|X = xr] ≤ 0, r = 1, . . . , R}.

9The inclusion of δ is mostly a theoretical indulgence, since it ensures that the probability of data being missing is always
positive, even asymptotically. However, in our DGPs we will always have δ < c/

√
n so that practically it plays no role in our

Monte Carlo study.
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Setting ψ(W, θ) = ψ(θ) = θ1, the identified set for the functional ψ is an interval ΨI(Pn) = [Ψ`b
I (Pn),Ψub

I (Pn)]

with the endpoints determined by:

Ψ`b
I (Pn) = min

θ∈ΘI(Pn)
ψ(θ), Ψub

I (Pn) = max
θ∈ΘI(Pn)

ψ(θ). (2.89)

In our DGP, we set Y = Xθ + ε, where X ∈ {0, 1}4, with each component of X generated according to a

Bernoulli(0.5) distribution, and where ε ∼ N(0, 1). Note this implies that X has R = 16 points of support.

We assume that the random variables Y∗ and Y ∗ are generated according to:

Y∗ = Y −max{c/
√
n, δ},

Y ∗ = Y + max{c/
√
n, δ},

for c ∈ {1, 5, 10}, depending on the DGP, and δ = 10−6. Note that the model would be point-identified if

we set c = 0 and δ = 0. Notice that all constraints on the identified set can be expressed Aθ− b ≤ 0, where:

A
(2R×4)

=



−xT1 · P (X = x1)

−xT2 · P (X = x2)
...

−xTR · P (X = xR)

xT1 · P (X = x1)

xT2 · P (X = x2)
...

xTR · P (X = xR)


, b

(2R×1)
=



−E[Y∗1{X = x1}]
−E[Y∗1{X = x2}]

...

−E[Y∗1{X = xR}]
E[Y ∗1{X = x1}]
E[Y ∗1{X = x2}]

...

E[Y ∗1{X = xR}]


.

Similar to the previous simulation exercises, we take sample sizes n ∈ {100, 250, 500, 1000}.

Results

The simulation results for the interval valued regression example are displayed in Table 2.3. Similar the

missing data Monte Carlo, the coverage probability for the true parameter is slightly above nominal. Again,

this results from the fact that often the true parameter lies interior to the identified set, as well as from the

thresholding discussed at the beginning of this section. However, the coverage probability is very close to

nominal (e.g. see the results for n = 1000 and c = 1). As the value of c increases, we see that the length of

the identified set increases due to the fact that the interval length for the interval-valued outcome variable

increases in length. However, in all of the DGPs considered our confidence set remain informative. Again,

the linear programming formulation of this problem also ensures that the confidence set can be computed

very efficiently; the approximate time to compute a confidence set was around 4 seconds.
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Chapter 3

Policy Transforms and Learning

Optimal Policies

We study the problem of choosing optimal policy rules in uncertain environments using models that may

be incomplete and/or partially identified. We consider a policymaker who wishes to choose a policy to

maximize a particular counterfactual quantity called a policy transform. We characterize learnability of a

set of policy options by the existence of a decision rule that closely approximates the maximin optimal value

of the policy transform with high probability. Sufficient conditions are provided for the existence of such a

rule. However, learnability of an optimal policy is an ex-ante notion (i.e. before observing a sample), and

so ex-post (i.e. after observing a sample) theoretical guarantees for certain policy rules are also provided.

Our entire approach is applicable when the distribution of unobservables is not parametrically specified,

although we discuss how semiparametric restrictions can be used. Finally, we show possible applications of

the procedure to a simultaneous discrete choice example and a program evaluation example.

3.1 Introduction

One of the fundamental goals of econometrics is to credibly translate knowledge of underlying economic

mechanisms into models that, when combined with sample data, can be used to understand the effects of

counterfactual policy experiments and can help guide policy decisions. In this paper we consider the problem

of making policy decisions in settings where the econometric model is partially identified and/or incomplete.

The paper is motivated by the fact that credible models are needed to honestly inform policy makers on the

impacts of counterfactual policies, even if credible models provide an incomplete description of the true data

generating process.

Our framework is general enough to accommodate many existing structural econometric models. Our

description of the environment is similar to descriptions found in Jovanovic (1989) and Chesher and Rosen

(2017a), which in turn are extensions of the classical foundations for econometric modelling set forth in Koop-

mans et al. (1950) and Hurwicz (1950), among others. We assume the economic system under consideration

manifests as a collection of random variables which can be partitioned into those that are observable—

including a vector of observed endogenous variables Y and a vector of exogenous variables Z—and those

that are latent or unobservable—denoted by the vector U . We refer colloquially to the variables contained

in Y and Z as the “observables,” and refer to the variables contained in U as the “unobservables.” Unlike

most of the existing literature, we do not take the distribution of U as a model primitive. This is in accor-

dance with the perspective that the latent variable U represents the gap between what can be explained by
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a theoretical model, and what must remain unexplained; that is, “errors in equations” rather than “errors

in variables.”1 As we will demonstrate, such a distinction becomes especially important when performing

counterfactual analyses.

The policymaker is assumed to have access to data on the observables, as well as an econometric model

that describes how the observables are related to the unobservables. The model may depend on a vector

of parameters θ ∈ Θ; here Θ is required only to be a complete and separable metric space, which permits

many function spaces used in nonparametric analyses. We then let Γ represent an abstraction of the set

of all possible policies under consideration by the policymaker, where γ ∈ Γ denotes one such policy. Each

hypothetical policy γ ∈ Γ represents an intervention on the underlying existing economic system, which

operates to generate the endogenous variables from the exogenous and unobserved variables. After the

economic system is modified, the resulting system may now generate a new, or counterfactual distribution of

the endogenous variables. Thus, by altering the underlying economic system, a policy intervention induces

a change between the factual (or observed) and counterfactual (hypothetical and unobserved) distributions

of the endogenous outcome variables. Latent variables are not affected by the policy, and instead serve

as important links between the factual and counterfactual domains.2 A policymaker’s problem is then

formulated as the problem of choosing a policy intervention that induces a counterfactual distribution of

endogenous outcome variables that is favourable according to some criterion.

We denote the counterfactual endogenous outcome variables as Y ?γ , where the γ index is to emphasize

the fact that its distribution will depend on the counterfactual policy experiment γ ∈ Γ under consideration.

Under this setup, this paper focuses on a particular class of counterfactual quantities that can be written in

the following form:

I[ϕ](γ) :=

∫
ϕ(v) dPVγ . (3.1)

Here ϕ is some function, Vγ := (Y ?γ , Y, Z, U) is a vector of all the random variables that describe the factual

and counterfactual domains, PVγ denotes the distribution of Vγ , and v denotes a realization of Vγ . In

particular, the operator I[ · ](γ) takes a function ϕ of the vector v of endogenous, exogenous, unobserved and

counterfactual variables, and maps it to a function I[ϕ](γ) of the policy parameter γ. For this reason, we

refer to I[ · ](γ) as a policy transform. As we will show in our examples on simultaneous discrete choice and

program evaluation, counterfactual objects that can be written as policy transforms include counterfactual

choice probabilities, and counterfactual average effects. If a policymaker’s counterfactual object of interest

can be written as the policy transform of some function ϕ, then the resulting policy transform gives all the

information the policymaker needs to compare various policies and make a policy choice.

Throughout the paper we consider a policymaker who wishes to maximize the value of the policy trans-

form, although our analysis is equally applicable to the case when the policymaker wishes to minimize the

value of the policy transform. With perfect knowledge of the distribution of the vector Vγ , the policymaker

faces a trivial decision problem and can simply choose the policy γ that obtains the maximum of the policy

transform I[ϕ](γ). However, this idealized decision problem is rarely encountered in practice, and instead

the policymaker may only have access to a finite sample of the observed random variables. Furthermore,

even with an infinite sample the policy transform may not be identified under any credible assumptions.

This will be especially true throughout our discussion, since we will not require that the distribution of the

unobservables U be parametrically specified.

1These two explanations of the error term are documented by Morgan (1990) Chapter 6. We recommend Qin and Gilbert
(2001) for a review of how attitudes towards the latent variables have evolved over time.

2From Pearl (2009) p. 211: “The background variables are the main carriers of information from the actual world to the
hypothetical world; they serve as the “guardians of invariance” (or persistence) in the dynamic process that transforms the
former into the latter.”
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To make progress, we model the policy decision problem as a decision under ambiguity, where we assume

that the “true state of the world” belongs to a state space S × PY,Z . Here PY,Z is the set of all Borel

probability measures on the observable space Y × Z. Furthermore, each s ∈ S is associated with a pair of

conditional distributions (PU |Y,Z , PY ?γ |Y,Z,U ). Taking a pair (s, PY,Z) ∈ S × PY,Z to be the true state, the

policymaker can evaluate the policy transform in (3.1) corresponding to that state. Keeping the dependence

on PY,Z implicit, we denote the policy transform in state (s, PY,Z) as I[ϕ](γ, s), and refer to it as the state-

dependent policy transform. We then consider the policymaker’s decision problem when she has access to a

finite sample from the true distribution. Let Ψn denote the space of all possible n−samples {(yi, zi)}ni=1, and

let d : Ψn → Γ denote a (measurable) decision rule that maps from sample realizations to policies. Before a

sample ψ ∈ Ψn is observed d(ψ) will be a random variable, and the policymaker’s problem is then translated

into the problem of selecting a decision rule according to some reasonable criteria.

However, without knowledge of the true state, it is unclear how the policymaker should (in a prescriptive

sense) choose among, or rank, various decision rules. One nearly self-evident requirement on any method of

ranking decision rules is that the ranking should respect weak dominance; that is, if for every PY,Z ∈ PY,Z
we have I[ϕ](d′(ψ), s) ≤ I[ϕ](d(ψ), s) a.s. for every s ∈ S, then d should be preferred to d′. However, it is

clear that many decisions rules will not be comparable according to this partial ordering.

To progress further, we introduce a preference relation over the space of all decision rules that is motivated

from computational learning theory. In particular, fix any κ ∈ (0, 1) and let cn(d, κ) be the smallest value

satisfying:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
inf
s∈S

I[ϕ](d(ψ), s) + cn(d, κ) ≥ sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)

)
≥ κ. (3.2)

Then under our framework, a decision rule d : Ψn → Γ is weakly preferred to decision rule d′ : Ψn → Γ at

level κ and sample size n if cn(d, κ) ≤ cn(d′, κ).3 This preference relation appears to be new, and diverges (to

some extent) from the existing literature on frequentist decision theory. However, its close connection to the

probably approximately correct (PAC) learning framework from computational learning theory allows us to

use a rich set of results from statistical learning theory and empirical process theory to study its theoretical

properties. In addition, this preference relation induces a total ordering, and our first result in Section 3.2

demonstrates that, at a minimum, this preference relation respects weak dominance.

Given this preference relation, throughout the paper we will use the value cn(d, κ) to measure the “per-

formance” or “quality” of a decision rule d for a given sample size n and confidence level κ. We then provide

two sets of theoretical results for the policymaker’s decision problem.

In the first set of results, we provide conditions on the decision problem that guarantees the existence of

a decision rule d such that cn(d, κ) tends to zero as the sample size n becomes large. The existence of such a

decision rule characterizes the notion of policy space learnability. The definition of policy space learnability

appears to be new in economics, although it is adapted from the widely popular PAC learning framework

from computer science proposed by Valiant (1984). Our particular analysis deals mostly with the decision

theoretic generalization of the PAC learning model proposed by Haussler (1992), which is referred to as the

agnostic PAC learning model.

We show that even in simple environments the policy space may not be learnable. In this case the

policymaker’s decision problem is still well-defined, but there will be theoretical limitations on how well any

given policy can perform, even in large samples. We then provide sufficient conditions for learnability which

are related to certain complexity measures of the class of functions in our problem; in particular, to the

behaviour of covering/packing numbers and metric entropy. We define an “entropy growth condition,” and

3See Definition 3.2.3.
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we show that if certain key classes of functions in our environment satisfy this condition, then the policy

space Γ is learnable. Primitive conditions for our entropy growth condition can be found in the literature

on empirical processes and statistical learning. In addition to being sufficient for learnability, we also show

how the condition can be used to establish rates of convergence.

However, since learnability is an ex-ante notion (i.e. before observing the sample), verifying learnability

can be uninformative about the ex-post performance (i.e. after observing the sample) of a given policy rule.

Thus, our second set of results provides a means for the policymaker to perform an ex-post analysis of her

selected policy rule. First we study the finite sample properties of a particular decision rule, called the

ε−maximin empirical (eME) rule, which selects a ε−maximizer of the worst case (over s ∈ S) empirical

version of I[ϕ](γ, s). Using concentration inequalities, we provide an upper bound on the quantity cn(d, κ)

when d is the eME rule, and we demonstrate how the upper bound is affected by various features of the

decision problem.

However, the eME rule is only one particular rule, and for many reasons it may not be the policy rule

selected by the policymaker. We thus turn to the problem of approximating the set of all policies γ ∈ Γ

satisfying:

γ 7→ sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](γ, s) ≤ δ, (3.3)

with probability at least κ; note that any decision rule that selects a policy in this set will thus have

cn(d, κ) ≤ δ. We call this set of policies the “δ-level set,” and we show how a procedure from the literature

on excess risk bounds in statistical learning theory can be adapted to our environment to approximate

the δ−level set. Finally, we show that the eME decision rule selects a policy in the δ−level with high

probability for δ sufficiently large, providing further justification for its use. Unlike the first ex-ante analysis

of learnability, all of the results comprising the ex-post analysis do not require the entropy growth condition—

or any other sufficient condition for learnability—to be satisfied. Thus, they are applicable whether or not

the policy space Γ is learnable, although they are silent about rates of convergence. Taken altogether, we

believe our two sets of theoretical results provide a comprehensive means of making and evaluating policy

decisions.

This paper also makes a contribution from an identification perspective. Perhaps unsurprisingly, an

important theoretical object in our study of policy decisions are the following policy transform envelope

functions:

I`b[ϕ](γ) := inf
s∈S

I[ϕ](γ, s), Iub[ϕ](γ) := sup
s∈S

I[ϕ](γ, s).

Regardless of the true (sub-)state s0 ∈ S, at the true distribution PY,Z the policy transform in (3.1) can be

“sandwiched” between these upper and lower envelope functions. This idea is illustrated in Figure 3.1. Our

ability to provide a tractable characterization of these envelope functions thus turns out to be critical to our

ability to provide sufficient conditions for policy learnability, and for our ex-post analysis of the eME rule

and the δ−level set.

The envelope functions may not be policy transforms themselves, but under some conditions they can

be interpreted as sharp bounds on the policy transform I[ϕ](γ), point-wise in the variable γ. It is here

that we make a contribution in the identification literature by showing that the envelope functions can be

expressed as the value functions of optimization problems parameterized by the policy variable γ ∈ Γ. The

result is derived under assumptions found in the theory of error bounds and exact penalty functions from

the literature on optimization, and the resulting optimization problems are closely related to mathematical
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Figure 3.1: This figure illustrates the policy transform of some function ϕ, as well as the upper and lower envelope
functions Iub[ϕ](γ) and I`b[ϕ](γ) (resp.). The minimax (over (sub-)states s ∈ S) policy is the policy that minimizes
the upper envelope, and the maximin (over (sub-)states s ∈ S) policy choice is the policy that maximizes the lower
envelope.

programs with equilibrium constraints, or MPECs.4 A remarkable benefit of our optimization approach is

that we show the bounds on the policy transform can be constructed without the need to first estimate the

full identified set for θ, the vector of model parameters. This is in contrast to typical approaches to bounding

counterfactual quantities, which first estimate the identified set of structural parameters, and then perform a

counterfactual for every possible value of the parameter vector in the identified set. A direct implication of our

result is that, in either point- or partially-identified models, if the policymaker’s counterfactual quantity of

interest is the policy transform of some function ϕ, then all structural parameters can be treated as nuisance

parameters when performing counterfactuals and making policy choices. These results on identification may

be of substantial separate interest.

Finally, throughout the text we discuss a simultaneous discrete choice and a program evaluation example

in order to illustrate possible applications of the procedure. The simultaneous discrete choice example

includes empirical entry games (e.g. Tamer (2003)) and empirical models of social interactions (e.g. Brock

and Durlauf (2001)) as special cases, and has become a canonical example of an incomplete model in the

literature on partial identification. The second program evaluation example follows the setup in Heckman

and Vytlacil (1999) and Heckman and Vytlacil (2005). This example has attracted recent attention in the

literature on partial identification (e.g. Mogstad et al. (2018) and Mourifie and Wan (2020)) and is included

to show the breadth of our procedure.

3.1.1 Related Literatures

This paper builds on results from a variety of different literatures, including recent work on counterfactuals

in structural models, partial identification and random set theory, decision theory and optimal policy choice,

and computational and statistical learning theory.

Our approach to modelling and counterfactuals in partially identified models extends the literature us-

ing random set theory in econometrics, including Beresteanu et al. (2011), Galichon and Henry (2011),

4See Dolgopolik (2016) for a survey of exact penalty functions and their connection to error bounds, and see Luo et al.
(1996) for a textbook treatment MPECs.
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Beresteanu et al. (2012) and Chesher and Rosen (2017a). As mentioned in the introduction, our general

environment is similar to descriptions found in Jovanovic (1989) and more recently in Chesher and Rosen

(2017a), which in turn are extensions of the classical foundations for econometric modelling set forth in

Koopmans et al. (1950) and Hurwicz (1950), among others. The use of random set theory is convenient

in order to permit application of the method to a wider class of models. In particular, our framework is

applicable to models that may (or may not) be incomplete, which are an important class of models in the

literature on partial identification. Incomplete models are now legion, and include entry games with multiple

equilibria (Bresnahan and Reiss (1990), Bresnahan and Reiss (1991), Tamer (2003), Jia (2008), Ciliberto

et al. (2018)); english auctions (Haile and Tamer (2003), Chesher and Rosen (2017b)); discrete choice models

with endogenous regressors or social interactions (Chesher and Rosen (2012), Chesher et al. (2013), Chesher

and Rosen (2014)); matching models (Uetake and Watanabe (2019)); friendship networks (Miyauchi (2016));

and selection and treatment effect models (Mourifie et al. (2018), Russell (2019)).

From the perspective of policy choice, our general approach to the problem of policy decisions is new.

However, there is now a large and growing literature on statistical treatment rules in econometrics, including

papers by Manski (2004), Hirano and Porter (2009), Stoye (2009a), Stoye (2012), Chamberlain (2011),

Tetenov (2012), Kasy (2016), Kitagawa and Tetenov (2018) and Mbakop and Tabord-Meehan (2019). In

general these papers can be divided according to (i) whether they are frequentist/bayesian, (ii) whether

they take a finite-sample or asymptotic approach, and (iii) whether they consider decision problems under

uncertainty or ambiguity (or “Knightian uncertainty”). In the current paper we take a frequentist, finite-

sample approach to decision problems under ambiguity. However, unlike previous papers that belong to

the same class, our method of evaluating statistical decision rules differs from the procedure proposed by

Wald (1950). In the absence of ambiguity arising from the unknown sub-state s ∈ S, our procedure is very

similar to the PAC framework for inductive inference that has become enormously popular in the computer

science literature. This model of learning was initially proposed in a seminal paper by Valiant (1984), for

which he won the prestigious Turing Award. The name “probably approximately correct” seems to have

been first used by Angluin and Laird (1988), who extended the model to the case of noisy data. The PAC

model and its extensions have now become the dominant model of learning in the theoretical foundations of

machine learning; influential textbook treatments that make this connection explicit include Kearns et al.

(1994), Vapnik (1995), Vapnik (1998), Vidyasagar (2002), Shalev-Shwartz and Ben-David (2014) and Mohri

et al. (2018). Our particular analysis is most closely related to the decision theoretic generalization of

the PAC learning model proposed by Haussler (1992), as well as the general learning setting considered

in Vapnik (1995). Other important papers studying necessary and sufficient conditions for learnability in

various machine learning settings include Blumer et al. (1989), Kearns and Schapire (1994), Bartlett et al.

(1996), Alon et al. (1997), and Shalev-Shwartz et al. (2010), among others. Our work here on providing

sufficient conditions for learnability borrows heavily from this literature. However, the additional ambiguity

that arises in relation to possible partial identification of the policy transform differentiates our setting from

the statistical learning literature, and our incorporation of this notion of ambiguity into the PAC framework

appears to be new. Many of our results are applicable to problems involving risk minimization subject to

(stochastic) constraints, and thus may be of separate interest to researchers in machine learning.

Surprisingly, we are unaware of any attempts to formally connect the literature on statistical decision

theory with the literature on statistical learning theory.5 On the one hand, the properties of a Wald-style

analysis are (at this point) better understood; see, for example, Stoye (2011) for an axiomatization of Wald’s

5Kitagawa and Tetenov (2018) and Mbakop and Tabord-Meehan (2019) make some connections with the statistical learning
literature. However, their method of evaluating statistical treatment rules is different from that considered by the PAC model.
Some discussion on the links with decision theory can be found in an influential paper by Haussler (1992), although the discussion
is very limited and no connection is made with Wald-style frequentist decision theory. As far as we are aware, this remains an
open question. We make a preliminary comparison in Appendix 3.A.3.

88



www.manaraa.com

frequentist maximin procedure. On the other hand, we find the PAC style criterion to be much more

amenable to informative ex-post analyses of particular decision rules, mostly due to its connection to the

concentration of measure phenomenon, and thus its amenability to analysis using concentration inequalities.

The connections to the statistical learning literature permeate our theoretical results. There are con-

nections of our work to the study of ratio-type empirical processes (e.g. Giné et al. (2003), Giné et al.

(2006)), and to the study of fixed-point equations and rates of convergence in risk minimization problems

(e.g. Massart (2000), Koltchinskii and Panchenko (2000), Bousquet et al. (2002), Bartlett et al. (2005), and

Koltchinskii (2006)). Overall our work is most closely related to the work of Koltchinskii (2006), and the

subsequent textbook treatment Koltchinskii (2011). As we will see in the section on the ex-post analysis of

certain decision rules, a key component of our approach is the use of Rademacher processes to construct data-

dependent bounds on certain important empirical processes. This has the benefit of allowing the policymaker

to avoid relying on any specific properties of the underlying function class, which are typically difficult to

verify, and thus are applicable whether or not the associated policy space is learnable. Furthermore, the use

of data-dependent complexity measures like the empirical Rademacher complexity ensures our finite sample

guarantees are less conservative than otherwise. It appears this idea was independently offered by Bartlett

et al. (2002) and Koltchinskii (2001), and was developed further in Koltchinskii (2006). See also Section 4.2

in Koltchinskii (2011). A review of excess risk bounds and their application to classification problems in

statistical learning theory can be found in Boucheron et al. (2005) and Koltchinskii (2011).

Closely related to the identification component of this paper—which studies the envelope functions for

the policy transform—is the work by Ekeland et al. (2010), Schennach (2014), Torgovitsky (2019) and

Li (2019). The paper of Ekeland et al. (2010) is focused on model specification testing, and allows for

econometric models with only semiparametric restrictions on the distribution of unobservables in the form

of moment conditions.6 Schennach (2014) provides a general framework for models with moment conditions

that depend on latent variables, and shows that the latent variables can be integrated out of the moment

conditions without loss of information using a least-favourable entropy maximizing distribution. Torgovitsky

(2019) shows that when restrictions on the distribution of the latent variables have a certain structure, sharp

identified sets for functionals of partially-identified parameters can be characterized in terms of optimization

problems. Finally, Li (2019) shows that sharp identified sets for structural and counterfactual parameters

can be constructed using a method that essentially profiles the latent variables out of the moment conditions.

In the current paper, we use an idea related to Li (2019) to eliminate unobservables from the counterfactual

bounding problem. However, in contrast to Li (2019) our focus on policy transforms means our formulation

does not require replacing a finite number of moment conditions with a continuum of moment conditions.

Furthermore, our approach does not require the policymaker to compute the full identified set of structural

parameters. Our specific characterization of the bounds on the policy transform in terms of two parametric

optimization problems was designed to be amenable to the theoretical analysis of policy space learnability,

and the analysis of the eME rule and the δ−level sets. Thus, our particular bounding approach is new.

Finally, and perhaps most importantly, our focus is primarily on using the bounds to study the problem of

policy choice, which is not considered in any of Ekeland et al. (2010), Schennach (2014), Torgovitsky (2019)

or Li (2019).

The idea that at least some structural parameters may be seen as nuisance parameters in the policy deci-

sion problem goes back at least as far as Marshak (1953). Heckman (2010) refers to this idea as “Marshak’s

Maxim.” At a high level, the identification component of this paper is reminiscent of Ichimura and Taber

(2000), who discuss a method for performing ex-ante policy experiments in the treatment effect literature

without estimating the structural parameters, and without specifying the error distribution. More recent

6The paper of Ekeland et al. (2010) is related to a string of other papers by the same authors, namely Galichon and Henry
(2006), Galichon and Henry (2009) and Galichon and Henry (2011).
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examples of counterfactual analysis without first estimating the (identified set for the) structural parameters

can be found in Syrgkanis et al. (2018), Tebaldi et al. (2019) and Kalouptsidi et al. (2019).

The remainder of the paper will proceed as follows. Section 3.2 introduces the notation and main defini-

tions and assumptions, in addition to describing the decision environment and introducing the motivating

examples. Importantly, Section 3.2 introduces the policy transform, and defines the notion of learnability of

a policy space. As described above, the theoretical results in this paper depend heavily on the nature of the

upper and lower envelope functions for the policy transform. Thus, in Section 3.3 we define the identified

set for the policy transform, and present our main identification result characterizing its upper and lower

envelopes. Equipped with this result, Section 3.4 then considers the problem of policy choice, providing

sufficient conditions for learnability, and Section 3.5 provides an ex-post analysis of the performance of par-

ticular decision rules. Section 3.6 concludes. All proofs can be found in the Appendices.

Notation: Given a subset X of a Polish space (a complete and separable metric space), we use B(X ) to

denote the Borel σ−algebra on X (note the topology on X is the topology induced by the metric). We will

often either leave the metric implicit, or will denote a generic metric by the function d : X ×X → R. For two

measurable spaces (X ,B(X )) and (X ′,B(X ′)), the product σ−algebra on X×X ′ is denoted by B(X )⊗B(X ′).
If X : (Ω,A)→ (X ,B(X )) is a random variable defined on the probability space (Ω,A, P ), then we use PX to

denote the probability measure induced on X by X; that is, for any A ∈ B(X ), PX(A) := P (X−1(A)). We let

σ(X) ⊆ A denote the smallest sub σ−algebra making X a measurable function. Furthermore, we interpret

PX|X′(X ∈ A|X ′ = x) as a regular conditional probability measure. In many cases we do not explicitly

differentiate between the true distribution of the random variable X, say PX , or some other distribution of

the random variable X, say P ′X , and instead leave the distinction to be resolved by context. To keep the

notation clean, we will omit the transpose when combining column vectors; that is, if v1 and v2 are two

column vectors, rather than write v = (v>1 , v
>
2 )> we instead write v = (v1, v2), where it is understood that v

is a column vector unless otherwise specified. Importantly, throughout the paper we use the convention that

sup ∅ = −∞ and inf ∅ = +∞. Finally, we will largely ignore measurability issues in the main text, but we

note that such issues are non-trivial in our framework, and are discussed and addressed in Appendix 3.B.2.

3.2 Methodology

3.2.1 Preliminaries

As mentioned in the introduction, the description of the environment follows closely that of Jovanovic (1989)

and Chesher and Rosen (2017a), which in turn are extensions of the classical foundations for econometric

modelling set forth in Koopmans et al. (1950) and Hurwicz (1950), among others. However, there are some

differences that will be pointed out as they occur. We will also make heavy use of random set theory in this

paper. Random set theory has played a major role in the development of methods for partially identified

models, for example in the contributions of Beresteanu et al. (2011), Galichon and Henry (2011), Beresteanu

et al. (2012) and Chesher and Rosen (2017a), among others. We will also use random set theory in this paper,

as it naturally generalizes many features of complete econometric models to incomplete models (see Chesher

and Rosen (2017a)). Since complete models can be seen as special cases of incomplete models, focusing

on incomplete models will allow us to construct a method that applies to a broader class of econometric

models. Some important definitions from random set theory—including the notion of Effros-measurability,
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the definition of a random set, the distribution of a random set, and the notion of a selection from a

random set—have been moved to Appendix 3.A for brevity. The current section will presume some working

knowledge of these concepts.

We begin by specifying the restrictions on the factual and counterfactual domains. First we will fix the

probability space and define the unobserved random variables and parameters that are common to both

domains.

Assumption 3.2.1. There exists a fixed probability space (Ω,A, P ), and a random element U : (Ω,A) →
(U ,B(U)) where U is a compact second-countable Hausdorff space. In addition, the parameter space Θ is a

Polish space equipped with the σ−algebra B(Θ).

Fixing the probability space throughout represents a departure from some of the existing literature on

partial identification and random set theory in econometrics (e.g. Galichon and Henry (2011), Chesher and

Rosen (2017a)). Our reason for doing so is mostly conceptual. This paper is concerned with counterfactuals,

and counterfactuals naturally involve some comparison of units between factual and counterfactual states. In

any probabilistic framework, the underlying probability space naturally specifies the basic unit of observation

(e.g. individuals, firms, types, etc.), so that it is necessary for the units of observation to be the same in

both the factual and counterfactual states when performing a counterfactual analysis. The point may seem

esoteric, but it will have a major impact on the statement and proofs of most of our results while also

resolving some interpretative difficulties.

The restriction that U is a compact space in Assumption 3.2.1 may seem overly restrictive; for example,

the euclidean space Rd (d <∞) with the usual topology is not a compact space. We might consider relaxing

Assumption 3.2.1 by allowing U to be a locally compact second-countable Hausdorff space, of which Rd

(with the usual topology) is an example. However, any locally compact Hausdorff space has a one-point

compactification; that is, assuming U is locally compact and Hausdorff, there exists a compact space Ũ with

U ⊂ Ũ such that Ũ \ U consists of a single point.7 Furthermore, Ũ is unique up to a homeomorphism.8 A

related argument has been presented in Schennach (2014). From this perspective, it is difficult to imagine

an environment where a policymaker should have strong a priori reasons to model the unobservables using

a locally compact Hausdorff space U versus its one-point compactification Ũ , despite the fact that this is

often done in practice. On the other hand, the theoretical benefits of taking U to be compact (or to be the

one-point compactification of some locally compact Hausdorff space) are numerous. We will highlight these

benefits as they arise.

Note that we will not require that the distribution U belong to a parametric class. This is in keeping

with our desire to avoid treating the distribution of U as a model primitive. This perspective is consis-

tent with the idea that the latent variables represent components of the underlying economic system that

remain unmodelled, due primarily to the policymaker’s ignorance of the process determining U , and thus

her inability to construct a complete mathematical description of the economic system under investigation.

This interpretation becomes especially meaningful given the role the latent variables play in determining

counterfactual outcomes. Instead, as we will see, the distribution of U can be implicitly constrained by the

remaining primitives of the model.

Finally we note that equipping the parameter space with the Borel σ−algebra B(Θ) may seem odd.

However, to make policy decisions in our framework will require measurability of certain functions to be

introduced later on. Primitive conditions for the required measurability will make use of the measure space

(Θ,B(Θ)). We return to similar points throughout the paper, and refer readers to Appendix 3.B.2 for our

results on measurability.

7See Munkres (2014) Theorem 29.1.
8Recall a homeomorphism is a continuous invertible function with a continuous inverse.
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We will now summarize the restrictions on the factual and counterfactual domains, beginning with the

factual domain.

Assumption 3.2.2 (Factual Domain). The factual domain is represented by random vectors Y : (Ω,A)→
(Y,B(Y)) and Z : (Ω,A) → (Z,B(Z)), where Y and Z are Polish spaces. There exists a (possibly multi-

valued) map G− : Y × Z ×Θ→ U which is closed and Effros-measurable, and satisfies:

P
(
U ∈ G−(Y,Z, θ0)|Y = y, Z = z

)
= 1, (3.4)

(y, z)−a.s. for some θ0 ∈ Θ. Furthermore,

EPU|Y,Z×PY,Z [mj(y, z, u, θ0)] ≤ 0, j = 1, . . . , J, (3.5)

for some measurable functions mj : Y ×Z ×U ×Θ→ R, for j = 1, . . . , J , bounded in absolute value for each

θ ∈ Θ.

The first part of the assumption states that the unobserved random vector is a selection from the random

set G−(Y,Z, θ0) (see Appendix 3.A for the definition of a selection).9 Note the assumption requires only

that G−(·, θ) admits a selection when θ = θ0. The first part of the assumption can thus be interpreted

as a support restriction for the vector of unobservables conditional on the observed data. These support

restrictions are derived from the policymaker’s econometric model, as we will see in the examples ahead.

We also note that the random set G− contains the U−level sets presented in Chesher and Rosen (2017a)

as a special case, and thus our framework will be applicable to the generalized instrumental variable (GIV)

models considered in their work.

In the second part of the assumption we suppose that the factual domain satisfies the moment inequalities

in (3.5), which are allowed to depend on the unobserved random variable U . This differs from moment

conditions in the generalized method of moments (GMM), as well as typical definition of moment inequalities

(c.f. Chernozhukov et al. (2007b)). This places our paper in the narrow literature in partial identification

that allows for moments to depend on unobserved random variables with a possibly unknown distribution

(c.f. Ekeland et al. (2010), Schennach (2014), Torgovitsky (2019) and Li (2019)). The assumption of

boundedness of the moment functions may appear to be restrictive. This assumption might be replaced

by the weaker assumption that the moment functions are uniformly integrable with respect to the set

of probability measures PU |Y,Z × PY,Z satisfying the other components of Assumption 3.2.2.10 However,

regardless of how it is weakened, we contend that boundedness of the moment functions remains the most

primitive assumption for our purposes. Finally, the fact that there are only a finite number of moment

functions may also be restrictive; for example, this prohibits the use of conditional moment inequalities

when the conditioning variable is continuous. Our identification result in Section 3.3 can be extended—

under a suitable modification of our assumptions—to handle the case of an infinite number of moment

inequalities. However, the same statement is not true of the results in Sections 3.4 and 3.5 on policy

decisions, which rely more crucially on the fact that the number of moment conditions is finite. We also

note that both the Effros measurability of G− and Borel measurability of each moment function mj with

respect to B(Y)⊗B(Z)⊗B(Θ) (rather than only with respect to B(Y)⊗B(Z)) will be required later on

to ensure measurability of certain key classes of functions.

Similar to the factual domain, we must specify restrictions on the counterfactual domain, and when

specifying the counterfactual domain we must specify which counterfactuals are under consideration by

9A similar argument to the one presented in Appendix B of Chesher and Rosen (2015) can be used to show that this
characterization of selectionability conditional on (y, z) a.s. is equivalent to using an analogous selectionability criteria for the
joint distributions of (Y, Z, U). A similar point will apply later on when we introduce Assumption 3.2.3.

10See for example alternative assumptions given in Ekeland et al. (2010) and Li (2019).
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the policymaker. We index various counterfactuals by an abstract parameter γ, where a fixed value of γ

represents a single counterfactual, and different values of γ correspond to different counterfactuals. The

interpretation of the parameter γ that will be used throughout is that it is an abstraction of a policy tool

under the control of the policymaker. The parameter γ will play an important role in our policy decision

procedure presented later in the paper.

Assumption 3.2.3 (Γ-Counterfactual Domains). The Γ-counterfactual domains are represented by a stochas-

tic process {Y ?(ω, γ) : γ ∈ Γ} where (Γ,B(Γ)) is a measurable space with Γ a Polish space, and where

Y ?γ := Y ?(·, γ) is such that Y ? : (Ω × Γ,A ⊗B(Γ)) → (Y?,B(Y?) is measurable, with Y? a Polish space.

Furthermore, there exists a (possibly multi-valued) map G? : Y × Z × U ×Θ× Γ→ Y? which is closed and

Effros measurable, and satisfies:

P
(
Y ?γ ∈ G?(Y, Z, U, θ0, γ)|Y = y, Z = z, U = u

)
= 1, (3.6)

(y, z, u)−a.s. for the same θ0 ∈ Θ from Assumption 3.2.2, and for all γ ∈ Γ .

Compared to the existing literature, Assumption 3.2.3 appears to be new. It restricts the set of counter-

factuals considered in this paper to be those that can be written as modifications of support-like restrictions

on the random variables in the model. We contend that this assumption is able to accommodate most

counterfactuals of interest in economics, although it rules out, for example, consideration of counterfactuals

that modify the distributions of the latent variables. Under this assumption we have that Y ?γ := Y ?(·, γ) is a

selection process from the set-valued process G?(Y, Z, U, θ0, γ), where G? is required to be Effros-measurable

with respect to the product σ−algebra. Again, the measurability requirement with respect to both Θ and

Γ may seem odd, but will be required in Section 3.4 and 3.5 when we consider the question of policy choice.

Note that—consistent with the remark following Assumption 3.2.1—the probability space in Assumptions

3.2.2 and 3.2.3 are assumed to be the same.

Remark 3.2.1 (The “No Back-Tracking” Principle). From a purely mathematical standpoint there is no

reason that the moment functions in Assumption 3.2.2 cannot also be functions of Y ?γ and/or γ ∈ Γ. How-

ever, we omit this extension for interpretive reasons and caution researchers interested in this approach. In

particular, if the researcher is not judicious in her formulation of such moment functions, then it is possible

to have environments where the counterfactual γ ∈ Γ of interest has “identifying power” for the structural

parameters θ ∈ Θ. Such environments are extremely puzzling since, intuitively, in these cases the counter-

factual domain γ ∈ Γ under consideration contains “information” on the values of the structural parameters

θ ∈ Θ existing in the factual domain. Environments that avoid such difficulties will be said to satisfy the

“no back-tracking principle.”11 We will return to this idea at some point in our example on simultaneous

discrete choice models.

The setup implied by Assumptions 3.2.1, 3.2.2 and 3.2.3 is illustrated in Figure 3.2. Throughout the

remainder of the paper, we let Vγ := (Y ?γ , Y, Z, U) denote a random vector with realizations v ∈ V, where V
is a product space with the product σ−algebra.

3.2.2 Examples

We will now turn to two examples to help illustrate the nature of the assumptions just introduced. The

examples will be revisited throughout the remainder of the text. The introduction of the examples is lengthy,

and readers may skip to Subsection 3.2.3 without loss of continuity.

11This principle is named in honour of the philosopher David Lewis who argued against similar “back-tracking counterfactuals”
in Lewis (1979).
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Figure 3.2: Displayed above is an illustration of the setup implied by Assumptions 3.2.1, 3.2.2 and 3.2.3. In particular,
note that all random variables are assumed to be defined on the same probability space. Furthermore, note the
direction of the arrows from the factual domain Y ×Z to the latent U to the counterfactual domain Y?, intended to
illustrate the process by which information from the factual domain informs on the counterfactual domain.

The first example we consider is a simultaneous discrete choice model. Simultaneous discrete choice

models have seen a wide number of applications, including empirical entry games (e.g. Tamer (2003)), and

discrete choice models with social interactions (e.g. Brock and Durlauf (2001)). It is already known from

the work of Chesher and Rosen (2020) that this example falls into the class of GIV models considered by

Chesher and Rosen (2017a). For readers familiar with these works, the model will serve as a natural point of

comparison. The second example is a program evaluation example which closely mirrors the environment in

Heckman and Vytlacil (2005). The example shows a model where the structural parameter is point-identified,

but the counterfactual object of interest is partially-identified.12

Example 1 (Simultaneous Discrete Choice). Consider a simultaneous discrete choice problem. In particular,

assume that a binary outcome vector Y := (Y1, . . . , YK) has generic element Yk ∈ Y determined by the

equation:

Yk = 1{πk (Zk, Y−k; θ) ≥ Uk}. (3.7)

Here Zk is a vector of covariates, Uk is an unobserved random variable, and θ is a vector of model parameters.

We will define the vector Z := (Z1, . . . , ZK) and U := (U1, . . . , UK) where each variable Zk has support

Z = {z1, . . . , zL}, a finite subset of euclidean space, and each Uk has support U = [−1, 1]du .13 For each

k, we assume that πk is a known measurable function of (Zk, Y−k, θ), mapping to [−1, 1] that is linear in

parameters θ and has a gradient (with respect to θ) bounded away from zero for each (z, y−k). We also

assume that θ = (θ1, . . . , θK), and that each πk depends only on the subvector θk. For simplicity we will

assume that the parameter space Θ is a compact subset of Rdθ , and that U is continuously distributed. To

illustrate the use of semi-parametric restrictions, we will also assume that each coordinate of the vector U

is (i) median zero, and (ii) median independent of (Zk, Y−k). Finally, we assume all random variables are

supported on the same probability space (Ω,A, P ). Verification of Assumption 3.2.1 under these conditions

is presented in Appendix 3.C.1.

12In our setting, this is due to the fact the instrument will be assumed to have finite support.
13Note that we could instead define U := Rdu , but then:

1{πk (Zk, Y−k; θ) ≥ Uk} = 1{π̃k (Zk, Y−k; θ) ≥ Ũk},

where π̃k (Zk, Y−k; θ) = tanh (πk (Zk, Y−k; θ)) and Ũk = tanh(Uk). In other words, the case with U := Rdu is homeomorphic
to the case U := [−1, 1]du .
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For the factual domain, we have the following multifunction:

G− (Y,Z, θ) := cl {u ∈ U : Yk = 1{πk (Zk, Y−k; θ) ≥ uk}, k = 1, . . . ,K.} . (3.8)

Note the closure is taken to ensure that G−(·, θ) is a closed set for each θ. However, this introduces no

additional structure and serves merely as a technical simplification, since G−(·, θ0) as defined above will

be almost surely equal to the right hand side of (3.8) without taking the closure, which follows from the

assumption that U is continuously distributed. To complete the description of the factual domain, we will

impose the median zero and median independence assumptions for each coordinate of the vector U as a

sequence of moment conditions. In particular, for k = 1 . . . ,K, we will impose the moment conditions:

E[(1{Uk ≥ 0} − 1{Uk ≤ 0})1{Zk = z, Y−k = y−k}] ≤ 0, ∀z ∈ Z, y−k ∈ YK−1, (3.9)

E[(1{Uk ≤ 0} − 1{Uk ≥ 0})1{Zk = z, Y−k = y−k}] ≤ 0, ∀z ∈ Z, y−k ∈ YK−1. (3.10)

Taken together, (3.9) and (3.10) imply that the latent variables Uk are both median zero and median in-

dependent of covariates Zk and the outcomes Y−k.14 Verification of Assumption 3.2.2, including Effros-

measurability of the multifunction (3.8), is provided in Appendix 3.C.1.

Turning to the counterfactual domain, there are many possible counterfactuals that may be of interest.

For the sake of illustration, we will consider counterfactuals of the following form. Let γk : Z × YK−1 →
Z ×YK−1, γ = (γk)Kk=1, and Y ?γ := (Y ?1,γ , . . . , Y

?
K,γ) with typical element:

Y ?k,γ = 1{πk(γ(Zk, Y
?
−k,γ); θ) ≥ Uk}. (3.11)

For example, our interest may be in the properties of the counterfactual random variable Y ?k,γ , such as its

mean or its conditional mean. The multifunction for the counterfactual domain is then given by:

G?(Z,U, θ, γ) :=
{
y? ∈ Y : y?k = 1{πk

(
γ(Zk, y

?
−k); θ

)
≥ Uk}, k = 1, . . . ,K.

}
. (3.12)

Note here we take Y? = Y. Verification of Assumption 3.2.3, including Effros-measurability of the multi-

function in (3.12), is provided in Appendix 3.C.1.

Example 2 (Program Evaluation). Consider the problem of program evaluation. In this example, a binary

variable D ∈ {0, 1} indicates participation in the treatment or control group for some program, and the

observed real-valued outcome is given by:

Y = U0(1−D) + U1D, (3.13)

where U0 and U1 are potential outcomes that are never jointly observed. We will assume throughout that

U0, U1 ∈ U = [Y , Y ], and thus we also assume the outcome Y takes values in the bounded interval Y := [Y , Y ].

In the absence of a selection equation determining the values of D, the potential outcome model is incomplete.

This case is considered in Russell (2019), and the framework in this paper applies to this case as well.

Alternatively, we will consider the more popular approach of Heckman and Vytlacil (1999) and Heckman and

Vytlacil (2005), and will suppose that the treatment is determined by the equation:

D = 1{g0(Z) ≥ U}, (3.14)

14Note that this restriction implies constraints on the joint distribution of the vector (U1, . . . , UK). Alternatively, we might
instead impose only median independence of Uk with Zk, which restricts only the marginal distribution of Uk.
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where U is continuous, and g0(·) is an unknown measurable function of the observable covariates Z ∈ Z ⊂
Rdz , where dz is the dimension of the vector Z. We will assume that Z is finite, and will allow for the case

when the vector Z can be decomposed as Z = (X,Z0) with (i) U ⊥⊥ Z0|X (conditional independence) and (ii)

E[Ud|Z] = E[Ud|X] for d ∈ {0, 1} (mean independence). We will thus decompose Z as Z = Z0 × X , where

Z0 is the support of Z0 and X is the support of X. Under these assumptions, it is without loss of generality

that U be taken to be uniformly distributed on [0, 1] conditional on Z. As shown in Vytlacil (2002), these

assumptions, combined with the additive separability of the selection equation in (3.14), are equivalent to the

assumptions required to estimate the local average treatment effect (LATE) of Imbens and Angrist (1994).

This connects this model with a large body of empirical work that focuses on obtaining estimates of the LATE.

Set the parameter space as Θ = G × T . Here G can be taken equal to the space of all positive measurable

functions on Z which is a metric space with the sup norm (for example); under finiteness of Z, this space

is Polish. Furthermore, we will take the component T of the parameter space to be the space of all possible

measurable functions on Z. This component of the parameter space will be used in the moment functions

below. Finally, we shall denote a generic pair (g, t) ∈ Θ as θ.

We will denote the support of (U0, U1, U) as U := [Y , Y ]2 × [0, 1]. We also assume that the random

variables in the vector (Y,D,Z, U0, U1, U) are all supported on the same probability space (Ω,A, P ). Under

these conditions, Assumption 3.2.1 is verified in Appendix 3.C.2.

For the factual domain we have the multifunction:

G− (Y,D,Z, θ) := cl

{
(U0, U1, U) ∈ U :

Y = U0(1−D) + U1D,

D = 1{g(Z) ≥ U}.

}
. (3.15)

Note the closure is taken to ensure that G−(·, θ) is a closed set for each θ. However, this introduces no addi-

tional structure and serves merely as a technical simplification, since G−(·, θ) as defined above will be almost

surely equal to the right hand side of (3.15) without taking the closure, which follows from the assumption

that U is continuously distributed. Close inspection of this multifunction provides some simplification:

G− (Y,D,Z, θ) =

{Y } × [Y , Y ]× [g(Z), 1], if D = 0,

[Y , Y ]× {Y } × [0, g(Z)], if D = 1.
(3.16)

To complete the description of the factual domain, we will impose the independence condition U ⊥⊥ Z0|X and

the mean independence condition E[Ud|Z] = E[Ud|X], for d ∈ {0, 1}, as a sequence of moment conditions.

In particular, since Z is assumed to be finite, let us partition Z into the product Z = Z0 × X , where

Z0 := {z01, . . . , z0K} and X := {x1, . . . , xL}. Now consider the following sequence of moment inequalities:

E[(D − g(z0, x))1{Z0 = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.17)

E[(g(z0, x)−D)1{Z0 = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.18)

and:

E[(1{U ≤ g(z0, x)} − g(z0, x))1{X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.19)

E[(g(z0, x)− 1{U ≤ g(z0, x)})1{X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X . (3.20)

Together (3.17) and (3.18) imply P (D = 1|Z = z) = g(z) for all z ∈ Z, and (3.19) and (3.20) imply

P (U ≤ g(z)|Z = z) = P (U ≤ g(z)|X = x) = g(z) for all z0 ∈ Z0 and x ∈ X . Under finiteness of

the support Z, these moment inequalities represent the only observable implications of the independence
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condition U ⊥⊥ Z0|X. In addition, we will impose the following moment conditions:

E [t(z0, x)− 1{Z = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, ∀x ∈ X , (3.21)

E [1{Z = z0, X = x} − t(z0, x)] ≤ 0, ∀z0 ∈ Z0, ∀x ∈ X , (3.22)

and:

E

[
Ud

(
1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)− 1{X = x}t(z0, x)

)]
≤ 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}, (3.23)

E

[
Ud

(
1{X = x}t(z0, x)− 1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)

)]
≤ 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}. (3.24)

Together (3.21) - (3.24) imply the mean independence condition: E[Ud|Z] = E[Ud|X] for d ∈ {0, 1}. In

particular, (3.21) and (3.22) ensure t(z0, x) = P (Z0 = z0, X = x), so that the moment conditions in (3.23)

and (3.24) imply:

E [Ud (1{Z = z0, X = x}P (X = x)− 1{X = x}P (Z0 = z0, X = x))] = 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1},

or equivalently:

E
[
Ud

(
1{Z = z0, X = x}
P (Z0 = z0, X = x)

− 1{X = x}
P (X = x)

)]
= 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}.

From here, a full verification of Assumption 3.2.2 for the factual domain, including Effros measurability of

the multifunction (3.16), is provided in Appendix 3.C.2.

With this setup, we might be interested in how the outcome variable changes when the factors Z that

determine an individual’s treatment decision are modified. For example, let Γ denote the set of all measurable

functions γ : Z → Z (note that there are at most finitely many).15 We can then define:

Y ?γ = U0(1−D?
γ) + U1D

?
γ , (3.25)

where the random variable D?
γ is then given by:

D?
γ = 1{g0(γ(Z)) ≥ U}.

Note that as in Heckman and Vytlacil (1999) and Heckman and Vytlacil (2005), our counterfactual γ ∈ Γ

has no direct effect on (U0, U1). Our interest is in the properties of the random variable Y ?γ , such as its mean

or its conditional mean. The multifunction for the counterfactual domain is given by:

G?(Z,U0, U1, U, θ, γ) :=

{
(Y ?γ , D

?
γ) ∈ Y × {0, 1} :

Y ?γ = U0(1−D?
γ) + U1D

?
γ ,

D?
γ = 1{g(γ(Z)) ≥ U}.

}
. (3.26)

Note here we take Y? = Y. Again, close inspection of this multifunction provides some simplification:

G?(Z,U0, U1, U, θ, γ) =

(U1, 1), if U ≤ g(γ(Z)),

(U0, 0), if g(γ(Z)) < U.
(3.27)

A full verification of Assumption 3.2.3 for the counterfactual domain, including Effros measurability of the

15See Carneiro et al. (2011) for a discussion of other possible parameters under this setting.
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multifunction (3.27), is provided in Appendix 3.C.2.

3.2.3 The Policy Transform and Decision Problem

Throughout the paper we will build on the environment established in the previous section to present a

framework for making policy decisions based on the value of any counterfactual object of interest that can

be written as an integral of some function of the vector Vγ . In particular, if ϕ : Ω × Γ → R is some

measurable function, then we will restrict attention to environments where policymakers are interested in

either the policy transform or the conditional policy transform of ϕ, which are defined next.

Definition 3.2.1 (Policy Transform and Conditional Policy Transform). Let ϕ : Ω × Γ → R be a bounded

and measurable function. The policy transform of ϕ is a function I[ϕ](γ) : Γ→ R given by:

I[ϕ](γ) :=

∫
ϕ(ω, γ) dP. (3.28)

Furthermore, if A′ ⊂ A is a σ−algebra, then a conditional policy transform of ϕ given A′ is a function

Ĩ[ϕ] : Ω×Γ→ R such that (i) Ĩ[ϕ] : Ω×Γ→ R is A′⊗Γ−measurable, and (ii) I[Ĩ[ϕ](·, γ)1A](γ) = I[ϕ1A](γ)

for every A ∈ A′.

We will focus on the unconditional policy transform throughout the remainder of the paper, since anal-

ogous results hold for the conditional policy transform. In addition, since the relevant random variables in

our environment are given in the vector Vγ , we will abuse notation throughout the paper and instead focus

on policy transforms of the form:

I[ϕ](γ) :=

∫
Ω

ϕ(Vγ(ω)) dP =

∫
V
ϕ(v) dPVγ , (3.29)

which are clearly a special case of the general policy transforms in Definition 3.2.1.

In the remainder of the paper we take as primitive that the policymaker would like to choose γ to maximize

the value of the policy transform for some known function ϕ : V → R, although all results apply equally

to the case where the policymaker wishes to minimize the policy transform.16 For pedagogical purposes,

it is useful to first consider an idealized decision problem. In particular, when (i) the true distribution

PY,Z is known, (ii) the conditional distribution PU |Y,Z is known, and (iii) the counterfactual conditional

distribution PY ?γ |Y,Z,U is known, the policymaker’s problem becomes trivial: she can simply compute the

policy transform of ϕ and choose the maximizing value of γ. However, clearly such idealized environments

will be rare. Instead, we will consider the more realistic case when the policymaker only has access to an

i.i.d. sample of size n from the true distribution PY,Z , and knows only that Assumptions 3.2.1, 3.2.2, and

3.2.3 are satisfied. In such an environment, the policymaker may be unable to compute the policy transform

due to (i) lack of perfect knowledge of PY,Z , (ii) lack of knowledge of PU |Y,Z and (iii) lack of knowledge of

PY ?γ |Y,Z,U . All three cases can occur when the structural parameters are point- or partially-identified.

We are now ready to define the decision problem under consideration.

We are now ready to define the decision problem under consideration.

Definition 3.2.2 (The Decision Problem). The policymaker’s decision problem is characterized by:

(i) The population, represented by the probability space (Ω,A, P ).

(ii) The action (or policy) space, given by (Γ,B(Γ)).

16After we describe the decision problem, it will be apparent that desire of the policymaker to maximize or minimize the
policy transform might be deduced using an axiomatic approach from a preference relation over the space of Borel probability
measures on V. We find this idea interesting, but will not pursue it here.
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(iii) The sample space, given by (Ψn,ΣΨn , P
⊗n
Y,Z), where Ψn := (Y × Z)n, with typical element ψ =

{(yi, zi)}ni=1, equipped with the product Borel σ−algebra ΣΨn := (B(Y) ⊗ B(Z))⊗n and the product

measure P⊗nY,Z .

(iv) The state space, given by S × PY,Z , where PY,Z is the set of all Borel probability measures on Y × Z,

and S is the set of all triples s = (θ, PU |Y,Z , PY ?γ |Y,Z,U ) such that the pair (s, PY,Z) satisfies:

(a) θ ∈ Θ,

(b) PU |Y,Z(U ∈ G− (Y,Z, θ) |Y = y, Z = z) = 1, (y, z)-a.s.,

(c) PY ?γ |Y,Z,U (Y ?γ ∈ G?(Y,Z, U, θ, γ)|Y = y, Z = z, U = u) = 1, (y, z, u)-a.s., and

(d) the elements θ ∈ Θ and PU |Y,Z satisfy:

max
j=1,...,J

EPU|Y,Z×PY,Z [mj(Y,Z, U, θ)] ≤ 0. (3.30)

(v) The feasible statistical decision rules D, with typical element d, given by the set of all measurable

functions d : Ψn → Γ.

(vi) The objective function, given by a function I[ϕ] : Γ× S × PY,Z → R, called the state-dependent policy

transform, which has the expression:

I[ϕ](γ, s) :=

∫
ϕ(v) d(PY ?γ |Y,Z,U × PU |Y,Z × PY,Z) (3.31)

where ϕ : V → R is a measurable function (where PY,Z is left implicit when writing I[ϕ](γ, s)).

A few remarks on this definition of our statistical decision problem are in order. In parts (i) and (ii), the

specification of the population and the action space are somewhat standard, and have been motivated in the

previous sections. In part (iii), the sample space is simply taken as the n−fold product of the observable

space (Y × Z). The measure on this space is the n−fold product of the true distribution PY,Z , from which

we immediately deduce that the sample in ψ ∈ Ψn is assumed to be i.i.d. Motivated from the framework

in the previous section, part (iv) indicates that the unobserved state is characterized by a distribution PY,Z

and the triple (θ, PU |Y,Z , PY ?γ |Y,Z,U ), where S corresponds to the set of all such triples that satisfy the model

support restrictions and moment conditions introduced in the previous section. In part (v), the feasible

decision rules D are characterized by the set of all measurable functions from the sample space Ψn to the

action space Γ. We will return to this point below.17 Furthermore, in this paper we will use the terms policy

rules and decision rules interchangeably. Finally, part (vi) of Definition 3.2.2 introduces the state-dependent

policy transform, which is a generalization of the policy transform that allows for it’s value to depend on the

unknown state from part (iv). Evaluated at the true state, the state-dependent policy transform reduces to

the policy transform from Definition 3.2.1.

Ex-ante (i.e. before observing the sample) each decision rule d : Ψn → Γ is a random variable. Under some

measurability conditions, this implies the state-dependent policy transform I[ϕ](d(ψ), s) is also a random

variable. The remaining question is how to use the collection {I[ϕ](d(ψ), s) : (s, PY,Z) ∈ S × PY,Z} to

evaluate a given policy rule. It seems self-evident that a policy rule d ∈ D should be preferred to a policy

rule d′ ∈ D if for every PY,Z ∈ PY,Z we have I[ϕ](d′(ψ), s) ≤ I[ϕ](d(ψ), s) a.s. for every s ∈ S; in such a

case, d delivers a larger value of the policy transform in every state with probability one, regardless of the

17Note we might instead allow for randomized decision rules by taking D to be the set of all measurable functions from Ψ
to the set of all distributions on Γ. This is not required for what we have in mind, but is easily accommodated under slightly
modified assumptions.
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distribution PY,Z . Any preference relation over D that satisfies this condition will be said to respect weak

dominance.18 However, beyond the requirement that a preference relation respect weak dominance, it is not

obvious how a policymaker should (in the prescriptive sense) choose among competing policy options given

the decision problem in Definition 3.2.2.19

Although a particular preference relation is not required in order to find the results in this paper interest-

ing, it will be useful to define our notion of optimality in the policymaker’s decision problem. In particular,

our results may be especially useful to policymakers that are sympathetic to the following preference relation:

Definition 3.2.3 (PAC Maximin Preference Relation). Fix a sample size n. For any κ ∈ (0, 1) and any

d ∈ D, let cn(·, κ) : D → R++ be the smallest value satisfying:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
inf
s∈S

I[ϕ](d(ψ), s) + cn(d, κ) ≥ sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)

)
≥ κ. (3.32)

Then decision rule d : Ψn → Γ is weakly preferred to (or weakly dominates) decision rule d′ : Ψn → Γ at level

κ and sample size n, denoted by d′ 4κ d, if and only if cn(d, κ) ≤ cn(d′, κ). The decision rule d : Ψn → Γ

is strictly preferred to (or strictly dominates) decision rule d′ : Ψn → Γ, denoted by d′ ≺κ d, if and only if

cn(d, κ) < cn(d′, κ). A decision rule d ∈ D will be called admissible with respect to 4κ if there is no decision

rule d′ ∈ D that is strictly preferred to (or strictly dominates) d.

This preference relation is named the PAC maximin preference relation given its close connection to the

learning framework in the next subsection, which in turn is closely related to the PAC learning model of

Valiant (1984) from computational learning theory. We refer readers to Appendix 3.A.2 where we discuss

the notion of PAC learnability from computational learning theory. We will also emphasize the connection

further in the next subsection.

For a fixed κ ∈ (0, 1), the preference relation from Definition 3.2.3 is a total ordering, meaning any two

decision rules d and d′ can be compared according to 4κ. In addition, it has an interpretation in terms of

quantiles. In particular, suppose for simplicity that PY,Z contains a single distribution π and define Qπ(κ, d)

as the κ quantile (under distribution π) of the map:

d 7→ sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s). (3.33)

Note that the map in (3.33) is always positive. Then a decision rule d ∈ D will be preferred to a decision rule

d′ ∈ D under 4κ if and only if Qπ(κ, d) ≤ Qπ(κ, d′). Quantile utility maximization has been considered in

Manski (1988) and Manski and Tetenov (2014), and axiomatized in Rostek (2010). However, our approach

has major differences from these approaches, especially with regards to our treatment of the (sub-)states

s ∈ S.

Providing an axiomatization for the preference relation in Definition 3.2.3 is beyond the scope of this

paper. Indeed, there is no reason why a policymaker needs to have the exact preference relation from

Definition 3.2.3 in order to find the results in this paper useful or interesting. However, the following result

shows that, at a minimum, 4κ respects weak dominance, as defined above.

Proposition 3.2.1. Suppose that Assumptions 3.2.1, 3.2.2 and 3.2.3 hold, and that ϕ : V → [ϕ`b, ϕub] ⊆ R is

a bounded and measurable function. Also, suppose that γ 7→ infs∈S I[ϕ](γ, s) is (universally) measurable. Let

18We refer to Manski (2011) for a similar definition. Also note that our definition implies stochastic dominance of I[ϕ](d(ψ), s)
over I[ϕ](d′(ψ), s) for every (s, PY,Z) ∈ S × PY,Z . By Strassen’s Theorem, our definition will be equivalent to stochastic
dominance if we allow for alternative probability spaces for each (s, PY,Z) pair.

19This point is raised repeatedly in the work of Charles Manski, and is summarized in Manski (2011).
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d, d′ ∈ D be two decision rules, and suppose that for every PY,Z ∈ PY,Z we have I[ϕ](d′(ψ), s) ≤ I[ϕ](d(ψ), s)

a.s. for every s ∈ S. Then for any κ ∈ (0, 1) we have d′ 4κ d, where 4κ is the preference relation from

Definition 3.2.3; that is, the preference relation 4κ respects weak dominance.

Proof. See Appendix 3.B. �

Remark 3.2.2. Universal measurability is a weaker requirement then Borel measurability, and is defined

in Appendix 3.B.2. Also, in Appendix 3.B.2 we show that the map γ 7→ infs∈S I[ϕ](γ, s) is universally

measurable, although the result and proof relies on Assumption 3.3.1 introduced in the next section. Since

Assumption 3.3.1 has not yet been introduced at this point, we impose (universal) measurability of γ 7→
infs∈S I[ϕ](γ, s) as a separate assumption in this proposition.

Our main interest in the preference relation from Definition 3.2.3—especially versus other preference

relations encountered in frequentist decision theory—is its close connection to the PAC learning framework,

which allows us to use a rich set of results from statistical learning theory and empirical process theory to

study its theoretical properties. Before formally introducing this connection, we will first revisit our examples

to illustrate the various definitions presented in Definition 3.2.2.

Example 1 (Simultaneous Discrete Choice (Cont’d)). For the simultaneous discrete choice example, recall

that our interest is in the properties of the counterfactual random variable Y ?k,γ , such as its mean or its

conditional mean. For the sake of illustration, we will focus on the quantity:

I[ϕ](γ) =

∫
Ω

1{Y ?k,γ(ω) = 1} dP, (3.34)

which is a counterfactual choice probability. Note this quantity is the policy transform of the function

ϕ(ω, γ) = 1{Y ?k,γ(ω) = 1}. Without much additional complication, we might instead be interested in the con-

ditional choice probability E[1{Y ?k,γ(ω) = 1}|Z]; it is easily verified that Ĩ[ϕ](ω, γ) = E[ϕ(ω, γ)|Z](ω), with

ϕ(ω, γ) = 1{Y ?k,γ(ω) = 1}, is a conditional policy transform.20 Throughout we will suppose the policymaker

is interested in selecting the policy γ ∈ Γ that maximizes the quantity (3.34). We can now formally define

the policymaker’s decision problem. The population is given by the probability space (Ω,A, P ) and the action

space is given by (Γ,B(Γ)), where Γ is the set of all functions γ = (γk)Kk=1 with γk : Z ×YK−1 → Z×YK−1

and B(Γ) can be taken as the power set of Γ.21 The sample space in this example is given by Ψn, which is

all possible realizations of the n vectors {(yi, zi)}ni=1. Each state of the world is indexed by a pair (θ, PU |Y,Z)

satisfying the support restriction given by (3.8) and the moment conditions (3.9) and (3.10). The state

dependent policy transform is given by:

I[ϕ](γ, s) :=

∫
1{Uk ≤ πk(γ(Zk, Y−k); θ)} dPU |Y,ZdPY,Z .

A feasible statistical decision rule is then any measurable function d : Ψn → Γ that selects a policy indexed

by γ given access to an n−sample from Ψn.

Example 2 (Program Evaluation (Cont’d)). For the program evaluation example, recall that our interest

is in the properties of the random variable Y ?γ , such as its mean or its conditional mean. For the sake

of illustration, we will focus on the average outcome under some counterfactual policy γ ∈ Γ, given by

20Indeed, by definition this quantity is measurable with respect to σ(Z), and satisfies:

I[Ĩ[ϕ](·, γ)1A](γ) =

∫
E[ϕ(ω, γ)|Z](ω)1A(ω) dP =

∫
1{Y ?k,γ(ω) = 1}1A(ω) dP = I[ϕ1A](γ), (3.35)

for every A ∈ σ(Z).
21Since Z and Y are finite, both Γ and B(Γ) contain at most finitely many elements.
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E[Y ?γ ]. Note that taking ϕ(ω, γ) = Y ?γ (ω) (:= Y ?(ω, γ)), it is then clear that E[Y ?γ ] = I[ϕ](γ), so that the

average effect of a counterfactual policy is the policy transform of the random variable Y ?γ (ω). Without much

additional complication, we might instead be interested in the conditional average effect E[Y ?γ |X]. It is easily

verified that Ĩ[ϕ](ω, γ) = E[ϕ(ω, γ)|X](ω), with ϕ(ω, γ) = Y ?γ (ω), is a conditional policy transform.22 We will

assume throughout that the policymaker is interested in maximizing the value of E[Y ?γ ]. We can now formally

define the policymaker’s decision problem. The population is given by the probability space (Ω,A, P ) and the

action space is given by (Γ,B(Γ)), where Γ is the set of all functions γ : Z → Z and B(Γ) is the power set

of Γ.23 The sample space is given by Ψn = (Y × {0, 1} × Z)n with a typical element ψ = ((yi, di, zi))
n
i=1.

The state space S is given by s = (θ, PU0,U1,U |Y,Z , PY ?γ |U0,U1,U,Y,Z), where PU0,U1,U |Y,Z and PY ?γ |U0,U1,U,Y,Z

are any random variables that satisfy the support restriction (3.15) and moment conditions (3.17) - (3.22).

Finally, a feasible statistical decision rule is any measurable function d : Ψn → Γ that selects a policy indexed

by γ given access to an n−sample from Ψn.

3.2.4 A Roadmap to the Theoretical Results: Ex-ante and Ex-post Analyses

With the policymaker’s decision problem defined in the previous subsection, our upcoming theoretical results

can be divided according to whether they are applicable ex-ante (i.e. before observing the sample) or ex-post

(i.e. after observing the sample).

Recall the preference relation from Definition 3.2.3. Under this preference relation, the “performance”

or “quality” of a decision rule d can be measured using the value cn(d, κ). Thus, the value of cn(d, κ) will

be a major focus of both the ex-ante and ex-post theoretical analyses in the remainder of the paper. Our

main focus in the ex-ante theoretical results is establishing sufficient conditions for learnability of a policy

space, which we will discuss further in this subsection. Our main focus for the ex-post theoretical analysis

is in establishing bounds on the value of cn(d, κ) for certain decision rules, as well as bounds on the set of

decision rules d ∈ D that obtain a small value of cn(d, κ).

Policy Space Learnability

To understand the ex-ante theoretical analysis, we must formally introduce the concept of policy space

learnability, named because of its connection to notions of learnability from computational learning theory.

Intuitively, a policy space Γ will be learnable if, for some decision rule d ∈ D, the value cn(d, κ) from

Definition 3.2.3 can be made arbitrarily small as n increases. This concept will be made precise in this

subsection.

A review of concepts of learnability from computational learning theory is provided in Appendix 3.A.2.

We argue that, under the preference relation from Definition 3.2.3, the conceptual differences between the

problem of policy choice and the problem of selecting an optimal classifier in a statistical learning setting

are smaller than they may initially appear. In both settings we wish to select a decision rule based on a

finite sample that will perform well, based on similar criteria, in samples yet unseen. The essential difference

between the environments is that the performance of a counterfactual policy is unobservable, even for the

sample in hand. Of course this is not an issue if the policymaker has an econometric model that can used

to determine the counterfactual outcomes of the policy experiment.

22Indeed, by definition this quantity is measurable with respect to σ(X), and satisfies:

I[Ĩ[ϕ](·, γ)1A](γ) =

∫
E[ϕ(ω, γ)|X](ω)1A(ω) dP =

∫
Y ?γ (ω)1A(ω) dP = I[ϕ1A](γ), (3.36)

for every A ∈ σ(X).
23Since Z is finite, both Γ and B(Γ) contain at most finitely many elements.
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The general model from the previous subsections will serve exactly this purpose. Given the preference

relation from Definition 3.2.3, the policymaker is presented with a decision problem that is remarkably similar

to a learning problem, which is apparent when the following definition is compared with the definition of

PAC Learnability from Appendix 3.A.2.

Definition 3.2.4 (PAMPAC Learnability). Under Assumptions 3.2.1, 3.2.2, and 3.2.3, a policy space Γ

is policy agnostic maximin PAC-learnable (PAMPAC) with respect to the policy transform of ϕ : V → R if

there exists a function ζΓ : R++ × (0, 1) → N such that, for any (c, κ) ∈ R++ × (0, 1) and any distribution

PY,Z over Y × Z, if n ≥ ζΓ(c, κ) then there is some decision procedure d : Ψn → Γ satisfying:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
inf
s∈S

I[ϕ](d(ψ), s) + c ≥ sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)

)
≥ κ. (3.37)

That is, a policy space is PAMPAC learnable if there is exists some decision rule d : Ψn → R that, in the

worst-case (sub-)state s ∈ S, closely approximates the value:

sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s),

with high probability for a sufficiently large (but finite) sample.24 In terms of the preference relation from

Definition 3.2.3, PAMPAC learnability implies that, as the sample size grows, every point in (c, κ)−space

must eventually (i.e. for large enough n) lie above the function cn(d, ·) : (0, 1) → R++ for some decision

rule d. This idea is illustrated in Figure 3.3. Framed in this manner, we see that PAMPAC learnability

is not required to determine the admissible decision rules or to make a policy choice. However, there may

be substantial ex-ante limitations on the theoretical performance of any given decision rule in environments

that are not PAMPAC learnable, making it an important object of theoretical analysis.

Despite the fact that PAMPAC learnability may appear to be a weak notion, there are trivial environments

where a policy space Γ may not be PAMPAC learnable.

Example 1 (Simultaneous Discrete Choice (cont’d)). Consider the general setup of Example 1. Suppose

for simplicity that K = 1, and consider the following modifications. Let Z = [−1, 1] and Θ = [−1, 1] and let

πk(Zk, Y−k; θ) = πk(Zk; θ) = sin(Zk/θ). Then Yk is determined by the equation:

Yk = 1{sin(Zk/θ) ≥ Uk}.

Now consider a policy space Γ that consists of all functions γ : Z → Z, and suppose we are interested in the

policy transform:

I[ϕ](γ) :=

∫
Ω

ϕ(ω, γ) dP =

∫
Ω

1{Y ?k,γ(ω) = 1} dP,

where ϕ(ω, γ) = 1{Y ?k,γ(ω) = 1} and:

Y ?k,γ = 1{sin(γ(Zk)/θ) ≥ Uk}.

In this case, we claim the policy space Γ may not be PAMPAC learnable with respect to the policy transform

24A nearly identical definition can be given for policy agnostic minimax PAC-learnability, with the exception that the decision

procedure d : Ψn → Γ must satisfy:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
sup
s∈S

I[ϕ](d(ψ), s)− c ≤ inf
γ∈Γ

sup
s∈S

I[ϕ](γ, s)

)
≥ κ. (3.38)
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Figure 3.3: This figure illustrates the idea of PAMPAC learnability from Definition 3.2.4. Given a pair (c, κ),
PAMPAC learnability guarantees that there is some finite n and some decision rule d : Ψn → Γ such that the graph
of cn(d, κ) lies entirely below the point (c, κ). For example, for (c1, κ1) in the figure, there exists a sample size n1 and
a decision rule d1 such that (3.37) is satisfied. Note that (3.37) is also satisfied for the points (c2, κ2) and (c3, κ3) at
n2 and d2, and n3 and d3, respectively. To verify PAMPAC learnability, the same must hold for all points (c, κ); in
particular, in the figure we would need to find a sample size n4 and decision rule d4 such that the graph of cn4(d4, κ)
lies entirely below the point (c4, κ4).

of ϕ.

It is important to realize that the possible failure of PAMPAC learnability does not hinge on the choice of

the sine function in this example, which is used for illustrative purposes only. Indeed, the following example

shows that the idea is more general.

Example 2 (Program Evaluation (cont’d)). Consider the general setup of Example 2, with the following

modifications. Let Z = [−1, 1] and let Θ denote the space of continuous functions with values in [−1, 1].

Otherwise, keep all other aspects of the factual domain the same. Now consider a policy space Γ that

consists of all continuous functions γ : Z → Z. Suppose we are still interested in the policy transform of

ϕ(ω, γ) = Y ?γ (ω), where:

Y ?γ = U0(1−D?
γ) + U1D

?
γ , (3.39)

and where the random variable D?
γ is given by:

D?
γ = 1{θ0(γ(Z)) ≥ U}.

In this case, we claim the policy space Γ may not be PAMPAC learnable with respect to the policy transform

of ϕ.

These examples illustrate that there may be limits to which policy spaces are learnable. In the first

example, learnability may fail because the structural function determining the counterfactual values of Y ?k,γ
is too “complex,” and so cannot be adequately approximated (or “learned”) with any finite amount of data.

A similar explanation applies to the second example, in particular to the structural function determining the

values of D?
γ . In the next sections we will explore sufficient conditions for the learnability of a policy space

that are precisely related to constraints on the complexity of certain function spaces. After establishing a
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particular policy space is learnable, which is an ex-ante (i.e. before observing the sample) notion, we will

then discuss how to evaluate particular decision rules, which is an ex-post (i.e. after observing the sample)

notion. Both components will be relevant to the theoretical evaluation of the decision problem.

3.2.5 The Path Forward

As is suggested by (3.37) in Definition 3.2.4, and as was discussed in the introduction, in order to determine

whether a given policy space Γ is PAMPAC learnable it is useful to first provide a characterization of the

envelope functions:

I`b[ϕ](γ) := inf
s∈S

I[ϕ](γ, s), Iub[ϕ](γ) := sup
s∈S

I[ϕ](γ, s).

Note that, at the true distribution PY,Z , the function I`b[ϕ](γ) serves as a lower bound on the policy transform

I[ϕ](γ). Similarly, the function Iub[ϕ](γ) serves as an upper bound. Recall that this idea was illustrated in

Figure 3.1 in the introduction.

In the case of PAMPAC learnability, if a tractable characterization of the lower envelope function I`b[ϕ](γ)

can be provided under some conditions, then determining whether a policy space is PAMPAC learnable

reduces to the problem of finding a decision rule d : Ψn → Γ that satisfies:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

I`b[ϕ](γ)− I`b[ϕ](d(ψ)) ≤ c
)
≥ κ, (3.40)

for large enough (but finite) n. Thus in the next section we focus on obtaining a tractable characterization of

the envelope functions before returning to the problem of policy choice in Section 3.4. Once a tractable char-

acterization of the lower (or upper) envelope function is provided, we will then present sufficient conditions

for PAMPAC learnability. In addition to its importance to our ex-ante analysis, we will see that a tractable

characterization of the envelope functions will also be key to our ex-post analysis of the policymaker’s decision

problem in Section 3.5.

3.3 Envelope Functions for the Policy Transform

3.3.1 Preliminaries

In this section we derive a useful characterization of the envelope functions I`b[ϕ](γ) and Iub[ϕ](γ) defined

in the previous section. We will show that these envelope functions can be written as the value functions of

optimization problems parameterized by γ ∈ Γ. Our specific characterization will be important when deriving

our learnability results, as well as for our ex-post finite-sample analysis in the next sections. However, for

those interested in partial identification, the results in this section may be of substantial separate interest.

We first define the identified set for the structural parameters and policy transform before presenting

our main result for this section. In general, these identified sets must be defined relative to a distribution

PY,Z .25 For notational simplicity this is kept implicit throughout this section.

We now begin by introducing some additional notation. For assistance with some of the notation in the

next definition, the reader is referred to Appendix 3.A, which discusses the notion of selectionability from a

random set.

Definition 3.3.1 (Distributions of Selections). The collection PU |Y,Z(θ) contains all regular conditional

probability measures PU |Y,Z such that each PU |Y,Z ∈ PU |Y,Z(θ) is the distribution of some selection U ∈
25See, for example, Definition 3 in Chesher and Rosen (2017a) and the surrounding discussion.
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Sel(G−(·, θ)); that is:26

PU |Y,Z(θ) :=
{
PU |Y,Z : U ∼ PU |Y,Z for some U ∈ Sel(G−(·, θ))

}
. (3.41)

Furthermore, the collection PY ?γ |Y,Z,U (θ, γ) contains all regular conditional probability measures PY ?γ |Y,Z,U
such that each PY ?γ |Y,Z,U ∈ PY ?γ |Y,Z,U (θ, γ) is the distribution of some selection Y ?γ ∈ Sel(G?(·, θ, γ)); that

is:27

PY ?γ |Y,Z,U (θ, γ) :=
{
PY ?γ |Y,Z,U (θ, γ) : Y ?γ ∼ PY ?γ |Y,Z,U (θ, γ) for some Y ?γ ∈ Sel(G?(·, θ, γ))

}
. (3.42)

We will see shortly that compactness of U from Assumption 3.2.1 is quite convenient. Indeed, note that

under compactness of U , the collection PU |Y,Z(θ) is uniformly tight for any θ. If PU |Y,Z(θ) is also closed

in the weak∗ topology, then the collection PU |Y,Z(θ) is compact in the weak∗ topology, which allows for a

simplification of the statement and proofs of many of the results. However, by the fact that G− is closed,

this latter result follows directly from the fact that every selection U ∈ Sel (G−(·, θ)) is supported by a

compact set.28 Thus, throughout our exposition we can use the fact that PU |Y,Z(θ) is compact in the weak∗

topology.

Beyond the simplifications that come with this result, it also solves a meaningful issue related to selections

from identically distributed random sets. Indeed, two identically distributed random sets may have different

sets of measurable selections, although the weak∗ closure of their measurable selections will always coincide.29

The issue is thus entirely resolved by compactness of U , which ensures the collection PU |Y,Z(θ) is closed in the

weak∗ topology; in other words, under Assumptions 3.2.1 and 3.2.2, this means two identically distributed

random sets G−(Y,Z, θ) and G−(Y ′, Z ′, θ) (see Definition 3.A.2 in Appendix 3.A) will have the same set of

measurable selections.

With the additional notation afforded by Definition 3.3.1, we now have the following definition of the

identified set of structural parameters:

Definition 3.3.2 (Identified Set of Structural Parameters). Under Assumptions 3.2.1 and 3.2.2, the iden-

tified set Θ∗ of structural parameters (with respect to the distribution PY,Z) is given by:

Θ∗ :=

{
θ ∈ Θ : inf

PU|Y,Z∈PU|Y,Z(θ)
max

j=1,...,J
EPU|Y,Z×PY,Z [mj(y, z, u, θ)] ≤ 0

}
. (3.43)

Compactness of PU |Y,Z(θ) in the weak∗ topology, combined with boundedness of the moment conditions,

ensures that the infimum in the definition of Θ∗ is obtained.30 Although our focus in this paper is not on

the identified set of structural parameters, this definition will be helpful when providing a definition of the

identified set for the policy transform, as well as in the proofs.

To state the definition of the identified set for the policy transform, it will be useful for us to first define

the following function:

I∗[ϕ](θ, γ, I, PY ?γ |Y,Z,U , PU |Y,Z)

26Clearly the collection PU|Y,Z(θ) also depends on PY,Z , although we suppress this dependence for notational simplicity
throughout.

27Clearly the collection PY ?γ |Y,Z,U (θ, γ) also depends on PY,Z,U , although we suppress this dependence for notational sim-

plicity throughout.
28See Corbae et al. (2009) Theorem 9.9.2 on p. 575, as well as the surrounding discussion.
29See Molchanov (2017) Theorem 1.4.3 on p. 79.
30This follows from the extreme value theorem after noting the map PU|Y,Z 7→ EPU|Y,Z×PY,Z [mj(y, z, u, θ)] is continuous

when the moment function mj is uniformly bounded.
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:= max

{ ∣∣∣EPY ?γ |Y,Z,U×PU|Y,Z×PY,Z [ϕ(Vγ)− I]
∣∣∣ , max
j=1,...,J

EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

}
. (3.44)

Intuitively, this function is less than zero if and only if (i) all moment conditions are satisfied at the distri-

bution PY,Z and the pair (θ, PU |Y,Z), and (ii) if the point “I” is the resulting value of the policy transform

for the inputs (θ, γ, PY ?γ |Y,Z,U , PU |Y,Z). As such, it represents all the conditions necessary for the point “I”

to be included in the identified set for the policy transform. We now have the following definition:

Definition 3.3.3 (Identified Set for Policy Transforms). Under Assumptions 3.2.1, 3.2.2, and 3.2.3, for

any γ ∈ Γ the identified set for I[ϕ](γ) (with respect to the distribution PY,Z) is given by:

I∗[ϕ](γ) :=
⋃
θ∈Θ∗

I[ϕ](θ, γ), (3.45)

where:

I[ϕ](θ, γ) :=

{
I ∈ R : ∃PU |Y,Z ∈ PU |Y,Z(θ) and PY ?γ |Y,Z,U ∈ PY ?γ |Y,Z,U (θ, γ)

satisfying I∗[ϕ]
(
θ, γ, I, PY ?γ |Y,Z,U , PU |Y,Z

)
≤ 0

}
. (3.46)

Our main result in this section will attempt to provide a more insightful characterization of the identified

set for policy transforms, which will also be vital for the problem of policy choice considered in the next

section. However, before stating our main identification result, we require the following technical assumption.

Assumption 3.3.1 (Error Bounds). (i) (Linear Minorant) There exists values δ > 0 and C1 > 0 such that

for every θ ∈ Θ:

inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+ ≥ C1 min{δ, d(θ,Θ∗)}. (3.47)

(ii) (Local Counterfactual Robustness) There exists a value C2 ≥ 0 such that for any θ ∈ Θ∗δ := {θ :

d(θ,Θ∗) ≤ δ}:

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ

≥ inf
θ∗∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ∗)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ∗,γ)

∫
ϕ(v) dPVγ − C2d(θ,Θ∗), (3.48)

and:

sup
PU|Y,Z∈PU|Y,Z(θ)

sup
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ

≤ sup
θ∗∈Θ∗

sup
PU|Y,Z∈PU|Y,Z(θ∗)

sup
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ∗,γ)

∫
ϕ(v) dPVγ + C2d(θ,Θ∗). (3.49)

Intuitively, Assumption 3.3.1 makes two statements. First, part (i) of the assumption is a global condition

that requires that, whenever θ ∈ Θ \Θ∗, there is at least one moment function that can be bounded below

by the function on the right side of (3.47). In general this condition is very similar to previous conditions in

the literature; see, for example, the “partial identification condition” in Chernozhukov et al. (2007b) section

4.2. Also, see Kaido et al. (2019b) for a review of similar conditions. The major difference arises from the

fact that the condition must hold for all PU |Y,Z ∈ PU |Y,Z(θ), owing to the fact that the moment conditions

in this paper are allowed to depend on the latent variables. Verifying condition (i) can usually be done by
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first enumerating all scenarios which imply θ /∈ Θ∗, and then verifying that the condition holds for each

such scenario. This is exactly the strategy used when verifying the assumption in the examples. Also note

that the condition is automatically satisfied if PU |Y,Z(θ) is empty—that is, when G−(Y,Z, θ) admits no

measurable selections—or when none of the moment conditions depend on the structural parameters.

Part (ii) of Assumption 3.3.1 appears to be entirely new. Intuitively, (3.48) is a local condition that

requires the smallest value of the integral of ϕ to not decrease too fast as we move θ slightly outside of the

identified set. In the opposite direction, (3.49) requires that the largest value of the integral of ϕ does not

increase too fast as we move θ slightly outside of the the identified set. These conditions will be violated if, for

example, the value of the integral can change discontinuously on the boundary of the identified set. We call

the condition the local counterfactual robustness condition because it demands that small changes in the value

of the structural parameters do not generate discontinuous changes in value of the counterfactual quantity of

interest. Interestingly, both of the conditions in Assumption 3.3.1 are related to typical assumptions made

in the theory of error bounds in the optimization literature.31 Finally, note the value of δ in parts (i) and

(ii) are the same. However, this is not restrictive, since part (i) and (ii) can be established for two different

values δ(i), δ(ii) > 0, and then δ can be taken as δ = min{δ(i), δ(ii)}.
In practice, part (ii) of Assumption 3.3.1 can be challenging to verify. Because of this, we introduce the

following assumption as an alternative to part (ii) of Assumption 3.3.1:

Assumption 3.3.2 (Error Bounds (2)(ii)). For some δ > 0, there exists values `1, `2 ≥ 0 (possibly depending

on δ) such that:

d(u,G−(y, z, θ)) ≤ `1 · d(θ,Θ−(y, z, u) ∩Θ∗δ), (y, z)− a.s. for all u ∈ U and θ ∈ Θ∗δ , (3.50)

d(y?,G?(y, z, u, θ, γ)) ≤ `2 · d(θ,Θ?(v, γ) ∩Θ∗δ), (y, z, u)− a.s. for all y? ∈ Y? and θ ∈ Θ∗δ . (3.51)

where Θ−(y, z, u) and Θ?(v, γ) are defined by:

Θ−(y, z, u) :=
{
θ : u ∈ G−(y, z, θ)

}
, Θ?(v, γ) := {θ : y? ∈ G?(y, z, u, θ, γ)} .

Furthermore, the function ϕ : V → R is bounded, measurable, and Lipschitz continuous in (u, y?) with

Lipschitz constant Lϕ.

The following Lemma shows that Assumption 3.3.2 is sufficient for part (ii) of Assumption 3.3.1. In the

process, the Lemma makes an interesting connection between Assumption 3.3.1 and certain Lipschitzian

behaviour of the random sets G− and G? with respect to the structural parameters θ ∈ Θ.

Lemma 3.3.1. Suppose that Assumptions 3.2.1, 3.2.2 and 3.2.3 are satisfied. Finally, suppose that G−(·, θ)
and G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. Then Assumption 3.3.2 implies Assumption

3.3.1(ii) with C2 = Lϕ max{`1, `2}.

Proof. See Appendix 3.B. �

It can be shown that the conditions (3.50) and (3.51) are equivalent to almost-sure versions of Lips-

chitz continuity conditions for set-valued maps, where the distance between two sets is measured by the

Pompeiu–Hausdorff distance. Localized versions of these conditions are called metric regularity conditions,

which also have a close connection to constraint qualifications from optimization theory. See Dontchev and

Rockafellar (2009) Chapter 3.3 and Ioffe (2016) for a discussion.

31See Pang (1997) for an introduction.
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3.3.2 Envelope Functions for the Policy Transform

We can finally turn to our main objective for this section, which is the problem of bounding the policy

transform I[ϕ](γ). Theoretically, bounds on I[ϕ](γ) can be obtained by solving two (very) complicated

constrained optimization problems that search over all distributions PU |Y,Z and PY ?γ |Y,Z,U that satisfy our

modelling assumptions for the ones that maximize and minimize the policy transform of ϕ. However, it is

clear that such optimization problems will be infeasible in most realistic cases. The following result shows a

tractable formulation of bounds on policy transforms that will be important for the next section.

Theorem 3.3.1 (Bounds on the Policy Transform). Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3 and

3.3.1 all hold. Also, suppose that ϕ : V → [ϕ`b, ϕub] ⊂ R is a bounded, measurable function, and that for

each γ ∈ Γ, the random sets G−(·, θ) and G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. Then

co I∗[ϕ](γ) = [I`b[ϕ](γ), Iub[ϕ](γ)], with:

I`b[ϕ](γ) = inf
θ∈Θ

max
λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z , (3.52)

Iub[ϕ](γ) = sup
θ∈Θ

min
λj∈{0,1}

∫
sup

u∈G−(y,z,θ)

sup
y?∈G?(y,z,u,θ,γ)

(
ϕ(v)− µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z , (3.53)

where µ∗ ∈ R+ is any value satisfying:

µ∗ ≥ max

{
C2

C1
,

(ϕub − ϕ`b)
C1δ

}
, (3.54)

and where C1, C2 and δ are from Assumption 3.3.1.

Proof. See Appendix 3.B. �

Theorem 3.3.1 states that the closed, convex hull of the identified set I?[ϕ](γ) from Definition 3.3.3 for the

policy transform I[ϕ](γ) can be computed as the solution to two optimization problems. Interestingly, these

optimization problems are closely related to problems found in the literature on mathematical programming

problems subject to equilibrium constraints (MPECs), which have previously seen applications in economics

to social planning problems and Stackelberg games.32 The upper and lower envelope functions in Theorem

3.3.1 are perhaps most aptly characterized as penalized optimization problems, with µ∗ in (3.54) serving

the role of the penalty parameter. Both the statement of the result and its proof rely on the theory of

exact penalty functions from the literature on error bounds in variational analysis.33 The Theorem uses the

error bounds Assumption 3.3.1 in order to show that the penalty µ∗ can be taken to be finite. This is very

important for the theoretical analysis of the policy decision problem to take place in the sections ahead.

Furthermore, implicitly Theorem 3.3.1 shows that the values of λj will depend only on the parameter θ, a

point which will used in the next sections.

From an identification perspective, the envelope functions will generally not give sharp bounds on the

policy transform. However, under any additional conditions that ensure the identified set I∗(γ) is closed and

convex for every γ ∈ Γ, Theorem 3.3.1 provides a (point-wise in γ) sharp characterization of the identified

set for the policy transform. Finally, the result is easily modified for the case when the object of interest is

a conditional policy transform.

One of the most interesting features of Theorem 3.3.1 is that, when the counterfactual object of interest

is a particular form, there is no need to compute the identified set Θ∗ of structural parameters in order to

32For a textbook treatment, see Luo et al. (1996).
33See Dolgopolik (2016) for a review.
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bound the counterfactual object of interest. In addition, the unobservables in the problem are profiled out,

and when the identified set I∗(γ) is closed and convex this is without any loss of information. This point

also translates into the policy decision problem studied in the next sections. The structural parameters and

unobservables intuitively play the role of an intermediary connecting the factual and counterfactual domains.

However, after the envelope functions from Theorem 3.3.1 are computed, they play no further role in the

problem of policy choice.

While we will not dwell on measurability issues in the main text, we note that Lemma 3.B.1 in Appendix

3.B.2 shows that the integrands in the optimization problems are universally measurable; that is, measurable

for the completion of any probability measure PY,Z . The proof of this result relies crucially on the fact that

both G− and G? are Effros-measurable. Furthermore, Proposition 3.B.1 in Appendix 3.B.2 shows that the

maps γ 7→ I`b[ϕ](γ), Iub[ϕ](γ) are measurable with respect to the universal σ−algebra on Γ (as generated by

the Borel σ−algebra). These results will be important to keep in mind in the next sections on policy choice.

We now return to the examples presented earlier to discuss our identification result. We will first verify

Assumption 3.3.1 in our examples and will show how Lemma 3.3.1 can be helpful.

Example 1 (Simultaneous Discrete Choice (cont’d)). Consider again Example 1 on simultaneous discrete

choice, and recall that we have imposed a median zero and median independence restriction using the moment

conditions in (3.9) and (3.10).

This example presents challenges for the verification of Assumption 3.3.1 because of the discontinuity

of the function ϕ(v) = 1{πk(γ(z, y−k); θ) ≥ u}. Indeed, under our current assumptions, Assumption 3.3.1

is not satisfied. To appreciate the intuition, focus on Assumption 3.3.1(ii). The issue for this assumption

arises only when for some k ∈ {1, . . . ,K} and some z ∈ Z and y−k ∈ YK−1 we have (i) the counterfactual

cutoff value πk(γ(z, y−k); θ∗) = 0 at some θ∗ ∈ ∂Θ∗, and if (ii) P (Yk = 1|Zk = z′, Y−k = y′−k) 6= 0.5, where

(z′, y′−k) = γ(z, y−k). In this knife-edge case, a very small change from θ∗ ∈ ∂Θ∗ to some θ /∈ Θ∗ can cause

a discontinuous change in P (Y ?γ,k = 1). A full description of this failure, including illustrations of various

cases, is presented in Appendix 3.C.1.

However, by slightly strengthening our moment conditions we can satisfy Assumption 3.3.1 in this ex-

ample. The key is to introduce additional assumptions on the degree of smoothness of the distribution of

Uk around zero. In particular, we will replace the moment conditions in (3.9) and (3.10) with the following

conditions:

E
[(
1{Uk ≤ πk(z′, y′−k; θ)} −max{L0πk(z′, y′−k; θ), 0} − 0.5

)
1{Zk = z, Y−k = y−k}

]
≤ 0, (3.55)

E
[(

0.5− 1{Uk ≤ πk(z′, y′−k; θ)} −max{−L0πk(z′, y′−k; θ), 0}
)
1{Zk = z, Y−k = y−k}

]
≤ 0, (3.56)

for k = 1, . . . ,K, for all z, z′ ∈ Z and all y−k, y′−k ∈ YK−1. In addition to implying the median zero/median

independence assumption, these new moment conditions also limit the amount of probability mass on U that is

arbitrarily close to zero, which turns out to be key to satisfying Assumption 3.3.1. Also note that, despite the

fact that these moment conditions will implicitly impose constraints on the obtainable counterfactual choice

probabilities, it is easily verified that they do not impose any additional constraints on the set of structural

parameters θ ∈ Θ that can rationalize the observed distribution (in the sense of Definition 3.3.2), and thus

do not violate the no-backtracking principle introduced in Remark 3.2.1.

With these new moment conditions, Assumption 3.3.1 can be shown to be satisfied. Recall that when

first introducing Example 1 we assumed πk is a known measurable function of (Zk, Y−k) that is linear in

parameters θ, and has a gradient (with respect to θ) bounded away from zero for each (z, y−k). We conclude

that πk is Lipschitz in θ, and also satisfies a “reverse Lipschitz” condition; that is, for each (z, y−k) we have:

L′k||θ − θ∗|| ≤ |πk(z, y−k; θ)− πk(z, y−k; θ∗)| ≤ Lk||θ − θ∗||,
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for some L′k, Lk > 0. Now define:

τ := min
k

min
(z,y−k)

|0.5− P (Yk = 1|Z = z, Y−k = y−k)| s.t. |0.5− P (Yk = 1|Z = z, Y−k = y−k)| > 0. (3.57)

Then the analysis in Appendix 3.C.1 shows that Assumption 3.3.1 is verified for C1 = L0L
′, C2 = L0L and

δ = τ/(L0L
′), where L = mink Lk and L′ = mink L

′
k. In Theorem 3.3.1 we can thus take the penalty µ∗ to

be any value satisfying:

µ∗ ≥ max

{
L

L′
,

1

τ

}
.

Theorem 3.3.1 says that the lower and upper envelopes on I[ϕ](γ) = P (Y ?γ = 1), as a function of γ, are

given by (3.52) and (3.53), respectively.

Remark 3.3.1 (Counterfactual Coherency). Recall that Theorem 3.3.1 applies only if the random sets

G−(·, θ) and G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. In the simultaneous discrete choice

example, the counterfactual map G?(·, θ, γ) can fail to be almost-surely non-empty, which is related to the

well known problem of coherency in these models. In particular, for a given instantiation of a vector of

unobservables (u1, . . . , uK), there may not exist any vector of counterfactual endogenous outcome variables

(y?1,γ , . . . , y
?
K,γ) that solves the system of equations represented by (3.11). However, we note that this issue

is unrelated to our particular approach, and might be resolved by (i) conditioning the analysis on the subset

of U that ensures a solution to the system of equations in (3.11), or (ii) imposing certain constraints on

the parameter space that ensures the existence of a solution to the system of equations in (3.11). We

refer the reader to Chesher and Rosen (2020) for a thorough discussion of this issue. However, whether

this “counterfactual coherency” problem can be resolved without violating the no-backtracking principle from

Remark 3.2.1 appears to be an open question.

Example 2 (Program Evaluation (cont’d)). Consider again Example 2 on program evaluation. Verification

of Assumption 3.3.1 is presented in Appendix 3.C.2, and uses Lemma 3.3.1 to verify Assumption 3.3.1(ii).

Remarkably, we show that Assumption 3.3.1 is satisfied for any value of δ > 0 with C1 = C2 = 1. Thus we

can take the penalty µ∗ = 1. Then Theorem 3.3.1 says that the lower and upper envelopes on I[ϕ](γ) = E[Y ?γ ],

as a function of γ, are given by (3.52) and (3.53), respectively.

3.4 On the Learnability of Optimal Policies

In this section, we provide sufficient conditions for PAMPAC learnability. To begin, the following proposition

clarifies the connection between the lower envelope function from the previous section and the notion of

PAMPAC learnability.

Proposition 3.4.1. Suppose Assumptions 3.2.1, 3.2.2, 3.2.3, and 3.3.1 hold. Also, suppose that ϕ : V →
[ϕ`b, ϕub] ⊂ R is a bounded, measurable function, and that for each γ ∈ Γ, the random sets G−(·, θ) and

G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. Then a policy space Γ is PAMPAC learnable with

respect to the policy transform of ϕ if and only if:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

I`b[ϕ](γ)− I`b[ϕ](d(ψ)) ≤ c
)
≥ κ, (3.58)

where I`b[ϕ] : Γ→ R is the lower envelope function from Theorem 3.3.1.
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Remark 3.4.1. By Proposition 3.B.1 in Appendix 3.B.2, the map ψ 7→ I`b[ϕ](d(ψ)) is universally measur-

able; that is, measurable with respect to the completion of any PY,Z ∈ PY,Z . Thus, the event in (3.58) can

always be assigned a unique probability using outer measures, if necessary.

In particular, the lower envelope function completely characterizes PAMPAC learnability of the policy

space Γ with respect to ϕ. Thus, it should be unsurprising that our sufficient conditions for a policy space to

be PAMPAC learnable will be related to the behaviour of the lower envelope function from Theorem 3.3.1.

Next we introduce an entropy growth condition, which will be imposed as a constraint on the complexity

allowed for both the moment functions and the function ϕ. To introduce the entropy growth condition, we

must first define the covering number and metric entropy for a class of functions.

Definition 3.4.1 (Covering Number, Metric Entropy). Let (T , ρ) be a semi-metric space. A cover of T
is any collection of sets whose union contains T as a subset. For any ε > 0, the covering number for T ,

denoted by N(ε, T , ρ), is the smallest number of ρ−balls needed to form a ε−cover. The metric entropy is

the logarithm of the covering number.

Definition 3.4.2 (Entropy Growth Condition). Let F be a measurable class of real-valued functions on a

measurable space (X ,AX ) with envelope F . The class F satisfies the entropy growth condition if:

sup
Q∈Qn

logN(ε,F , || · ||Q,2) = o(n), (3.59)

for every ε > 0, with the supremum taken over all discrete probability measures Qn on X with atoms that

have probabilities that are integer multiples of 1/n.

This condition is adapted from a condition in Dudley et al. (1991) (Theorem 6, p. 500) that, in combi-

nation with other mild conditions, is shown to be sufficient for a class of functions to be uniform Glivenko-

Cantelli.34 The entropy growth condition essentially says that, for any set Xn of n points (x1, . . . , xn) in

some space X , the logarithm of the minimal number of balls of radius ε > 0 needed to cover the set:

F|Xn := {(f(x1), . . . , f(xn)) : f ∈ F} ⊆ Rn,

is of order o(n). Sufficient conditions for this to be the case can be connected to conditions previously used

in the literature. For example, (3.59) is satisfied if the class of functions is of VC-type (c.f. Chernozhukov

et al. (2013), Belloni et al. (2019)), if the class satisfies Pollard’s manageability criterion (c.f. Pollard (1990),

Andrews and Shi (2013), Andrews and Shi (2017)), or if the class of functions is otherwise known to be a

uniform Donsker class.

The following Theorem shows that if certain classes of functions in the policy analysis problem obey the

entropy growth condition, then every policy space is PAMPAC learnable. To state the result, we must first

introduce an important class of functions. Let Λ = {0, 1}J , and for a fixed triple (θ, γ, λ) ∈ Θ × Γ × Λ, let

h`b(·, ·, θ, γ, λ) : Y × Z → R be given by:

h`b(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

(
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
. (3.60)

Note that h`b(·, ·, θ, γ, λ) is exactly the integrand in the lower envelope function from Theorem 3.3.1. Now

define the class of functions:

H`b := {h`b(·, ·, θ, γ, λ) : Y × Z → R : (θ, γ, λ) ∈ Θ× Γ× Λ} . (3.61)

34See also Van Der Vaart and Wellner (1996) Theorem 2.8.1 on p.167.
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Then we have the following result:

Theorem 3.4.1. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3 and 3.3.1 hold. Also, suppose that ϕ : V →
[ϕ`b, ϕub] ⊂ R is a bounded, measurable function, and that for each γ ∈ Γ, the random sets G−(·, θ) and

G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. Fix any ε > 0. (i) If the class of functions H`b
satisfies the entropy growth condition, then every policy space is PAMPAC learnable with respect to the policy

transform of ϕ. Furthermore, for any c > 0 we have:

sup
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s) ≥ c
)

= O(r1(n)), (3.62)

where:

r1(n) := max

{
n−1/2, n−1/2 sup

Q∈Qn

√
logN(ε,H`b, || · ||Q,2)

}
. (3.63)

(ii) If the class of functions:

Φ := {ϕ(·, u, y?) : Y × Z → R : (u, y?) ∈ U × Y?}, (3.64)

Mj := {mj(·, u, θ) : Y × Z → R : (u, θ) ∈ U ×Θ} , j = 1, . . . , J, (3.65)

are uniformly bounded, and satisfy the entropy growth condition, then so does H`b. Furthermore, for any

c > 0 we have:

sup
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s) ≥ c
)

= O(r2(n)), (3.66)

where:

r2(n) := max

n−1/2, n−1/2 sup
Q∈Qn

√√√√logN(ε/4,Φ, || · ||Q,2) +

J∑
j=1

logN(ε/2,Mj , || · ||Q,2)

 . (3.67)

Proof. See Appendix 3.B. �

The proof of the part (i) proceeds by proposing a specific decision procedure, and then showing that the

proposed decision procedure satisfies the requirements of PAMPAC learnability from Definition 3.2.4 when

the class of functions H`b satisfies the entropy growth condition. The specific decision procedure proposed

in the proof is any procedure that obtains within ε of the maximum of the sample analog lower envelope

function for each sample ψ ∈ Ψn, for some ε > 0. We call this rule the ε−maximin empirical rule, and

we will revisit it’s properties in the next subsection. Here we also finally see the close connection between

PAMPAC learnability and the lower envelope function from Theorem 3.3.1 in the previous section, which

has been alluded to throughout the paper. The particular form of the lower envelope function from Theorem

3.3.1 makes it amenable to analysis using methods from empirical process theory, which are used in the proof

of Theorem 3.4.1. Also note that Assumption 3.3.1, which was needed to obtain a bound on the penalty

µ∗ in Theorem 3.3.1, is also needed for this result. Without a bound on this penalty, Theorem 3.4.1 will

generally not be true.

The proof of part (ii) of Theorem 3.4.1 shows that if each “component” of the lower envelope of the policy

transform—namely the moment functions and the function ϕ—satisfy the entropy growth condition, then

the metric entropy of the class H`b can also be controlled. Combined with the result in Proposition 3.4.1,

the proof of part (ii) of Theorem 3.4.1 then shows that our proposed ε−maximin decision rule can obtain
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close to the maximum value (over γ ∈ Γ) of the lower envelope of the policy transform with high probability.

It may seem surprising that our learnability result holds for any policy space. However, this is a result

of the fact that the complexity of the policy space is tempered by the class of functions Φ from (3.64), since

it is only through functions in this class that the policy can affect the policy transform. By imposing that

the class Φ satisfy the entropy growth condition, we are implicitly imposing constraints on the complexity of

the policy space. Note that the Theorem provides only sufficient conditions for PAMPAC learnability, and

alternative results that impose complexity constraints on the policy space Γ directly, rather than on Φ, may

be possible.

We will now turn to our motivating examples to verify learnability of the involved policy spaces.

Example 1 (Simultaneous Discrete Choice (cont’d)). Consider again Example 1 on simultaneous discrete

choice. In this case we have:

Φ := {1{πk(γ( · ); θ) ≥ u} : (u, θ) ∈ U ×Θ}, (3.68)

with the moment conditions:

E
[(
1{Uk ≤ πk(z′, y′−k; θ)} −max{L0πk(z′, y′−k; θ), 0} − 0.5

)
1{Zk = z, Y−k = y−k}

]
≤ 0, (3.69)

E
[(

0.5− 1{Uk ≤ πk(z′, y′−k; θ)} −max{−L0πk(z′, y′−k; θ), 0}
)
1{Zk = z, Y−k = y−k}

]
≤ 0, (3.70)

for k = 1, . . . ,K, for all z, z′ ∈ Z and all y−k, y′−k ∈ YK−1. Details on the verification of the entropy growth

condition for both Φ and the class of moment functions associated with the moment conditions above are

presented in Appendix 3.C.1. Furthermore, under our assumptions for this example, the rate of convergence

derived from Theorem 3.4.1 is found to be O(n−1/2).

Example 2 (Program Evaluation (cont’d)). Consider again Example 2 on program evaluation. In this case

we have:

Φ := {1{g(γ(z)) ≥ u}(u1 − u0) + u0 : (u0, u1, u, g) ∈ U × G}, (3.71)

with the moment conditions:

E[(D − g(Z0, X))1{Z0 = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.72)

E[(g(Z0, X)−D)1{Z0 = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.73)

E[(1{U ≤ g(z0, x)} − g(z0, x))1{X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.74)

E[(g(z0, x)− 1{U ≤ g(z0, x)})1{X = x}] ≤ 0, ∀z0 ∈ Z0, x ∈ X , (3.75)

E [t(z0, x)− 1{Z = z0, X = x}] ≤ 0, ∀z0 ∈ Z0, ∀x ∈ X , (3.76)

E [1{Z = z0, X = x} − t(z0, x)] ≤ 0, ∀z0 ∈ Z0, ∀x ∈ X , (3.77)

and:

E

[
Ud

(
1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)− 1{X = x}t(z0, x)

)]
≤ 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}, (3.78)

E

[
Ud

(
1{X = x}t(z0, x)− 1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)

)]
≤ 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}. (3.79)

Details on the verification of the entropy growth condition for both Φ and the class of functions associated
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with the moment functions above are presented in Appendix 3.C.2. Furthermore, under our assumptions for

this example, the rate of convergence derived from Theorem 3.4.1 is found to be O(n−1/2).

3.5 Ex-Post Theoretical Results

Theorem 3.4.1 shows sufficient conditions for PAMPAC learnability in a given environment. However, while

the result shows that it may be possible ex-ante (i.e. before observing a particular sample) to learn a given

policy space, it does not provide us any useful ex-post (i.e. after observing the sample) information on the

performance of our decision rule. This reflects a well-known complaint of PAC learnability, and has given

rise to the literature on data-dependent excess risk bounds in statistical learning literature; see Bartlett

et al. (2002), Koltchinskii (2001), and Koltchinskii (2006) for examples, and Boucheron et al. (2005) or

Koltchinskii (2011) for a review. Thus after establishing learnability of a particular class of policies, it may

be of separate interest to evaluate the finite sample performance of a given decision rule for a given sample.

This is accomplished in the next subsections. We will focus our attention on the particular decision rule

used in the proof of Theorem 3.4.1 which was shown to satisfy the requirements of PAMPAC learnability

under the assumptions of the theorem. The decision rule used was allowed to be any ε−maximizer of

the empirical version of the lower envelope function I`b[ϕ](γ), which is why we will call it the ε−maximin

empirical rule.

Definition 3.5.1 (ε−maximin empirical welfare). Fix any ε ≥ 0 and let Î`b[ϕ](γ) denote the lower envelope

from Theorem 3.3.1 evaluated at the empirical measure for (Y, Z). Then d : Ψn → Γ is a ε−maximin

empirical (eME) rule if:

Î`b[ϕ](d(ψ)) + ε ≥ sup
γ∈Γ

Î`b[ϕ](γ). (3.80)

Remark 3.5.1. Note that in general the “ε” is necessary (although it can be made arbitrarily small), owing

to the fact that the supremum of Î`b[ϕ](·) may not be obtained.

Furthermore, unlike our result on PAMPAC learnability, all of the results in the next subsections are data-

dependent, and do not depend on any particular properties (beyond measurability) of any function classes

involved in the policy decision problem. Thus, there is no need to verify the entropy growth condition, or

any other condition sufficient for learnability to use the results ahead. In practice, we still recommend that

the sufficient conditions for learnability of a policy space be verified prior to using the results.

3.5.1 Theoretical Results for the Maximin Empirical Rule

In this section we obtain a bound on the value of cn(d, κ) for any fixed κ taking d to be the eME rule.

To describe our procedure, we will first introduce a data-dependent complexity measure for the class H`b.
The complexity measure we use is based on the empirical Rademacher complexity, advocated by Bartlett

et al. (2002), Koltchinskii (2001), and Koltchinskii (2006) (among others) in the context of empirical risk

minimization.

Definition 3.5.2 (Empirical Rademacher Complexity). Let F be a class of measurable functions f : Y×Z →
R. The empirical Rademacher complexity of F is given as:

||Rn||(F) := sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξi · f(yi, zi)

∣∣∣∣∣ , (3.81)
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where ξi are realizations of Rademacher random variables; that is, ξ ∈ {−1, 1} and P (ξi = −1) = P (ξ =

1) = 1/2.

Remark 3.5.2. A technical point worth emphasizing is that, when seen as a function of the underlying

product probability space, the empirical Rademacher complexity may not be a measurable function. We

suppress these difficulties in the statement of our results, although we show in Appendix 3.B.2 that the

Rademacher complexity ||Rn||(H`b) is universally measurable (with respect to the product Borel σ−algebra

on (Y × Z)n), which is sufficient for the purposes in this paper.

In our context, the empirical Rademacher complexity of the class H`b depends only on the observed

empirical distribution and on n draws of a Rademacher random variable; it can therefore be computed after

simulating from the Rademacher distribution. With this new definition in hand, we have the following result:

Theorem 3.5.1. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, and 3.3.1 hold. Let ϕ : V → [ϕ`b, ϕub] ⊂ R
be a bounded, measurable function, and suppose that for each γ ∈ Γ, the random sets G−(·, θ) and G?(·, θ, γ)

are almost-surely non-empty for each θ ∈ Θ∗. Let {(yi, zi)}ni=1 be i.i.d. from some distribution PY,Z satisfying

our assumptions and let d : Ψn → Γ be an eME decision rule for some ε > 0. Furthermore, let H < ∞
satisfy |h| ≤ H for every h ∈ H`b, and let:

cn(κ) = 4||Rn||(H`b) +

√
72 ln(2/(2− κ))H

2

n
+ 5ε. (3.82)

Then for any sample size n, and any κ ∈ (0, 1) we have:

inf
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s) ≤ cn(κ)

)
≥ κ. (3.83)

Proof. See Appendix 2.A. �

Theorem 3.5.1 shows two closely related results. First, for any fixed value of κ ∈ (0, 1) the Theorem shows

that, when in the worst-case state, the eME rule obtains within cn(κ) of the maximin value of the state-

dependent policy transform with probability at least κ. Simple comparative statics show that the value of

cn(κ) is smaller when n is larger and/or ||Rn||(H`b) and H are smaller. The only difficult part of computing

cn(κ) is computing the Rademacher complexity, which is approximately as difficult computationally as

computing the empirical version of the lower bound in Theorem 3.3.1.

We again see a close connection between PAMPAC learnability and the lower envelope function from

Theorem 3.3.1. The particular form of the lower envelope function from Theorem 3.3.1 makes it especially

amenable to analysis using concentration concentration inequalities, which are used in the proof of Theorem

3.5.1. Again Assumption 3.3.1 is required for this result: without a finite (and known) value for the penalty

µ∗, derivation of the finite sample results in Theorem 3.5.1 would not be possible.

Finally we mention again that, unlike Theorem 3.4.1 on PAMPAC learnability, Theorem 3.5.1 does not

impose any restrictions on the underlying class of functions H`b. In particular, this class need not satisfy the

entropy growth condition from Definition 3.4.2, nor any other sufficient conditions for learnability, meaning

Theorem 3.5.1 is applicable even when Γ is not PAMPAC learnable. As a result, Theorem 3.5.1 is able to

provide finite sample guarantees for the eME rule, but necessarily remains silent about rates of convergence.

3.5.2 Bounds on the Set of Optimal Policies

The previous subsection uses a specific rule, the eME rule, and derives finite sample theoretical guarantees

on the performance of this rule. However, the eME rule is only one particular rule, and for a variety of
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reasons it may not be the rule selected by the policymaker.

In order to complement the results of the previous subsection, in this subsection we will provide some

theoretical results on alternative policy rules. To understand the approach, let us define the function:

E ∗(γ) := sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](γ, s) = sup
γ∈Γ

I`b[ϕ](γ)− I`b[ϕ](γ), (3.84)

and the set:

G ∗(δ) := {γ ∈ Γ : E ∗(γ) ≤ δ}. (3.85)

We call the set G ∗(δ) the δ−level set. Our objective in this subsection will be to provide an approximation

of the δ−level set that holds with probability at least κ. If we can do so, then by constructionn any decision

rule d : Ψn → Γ that maps within our approximation of the δ−level set will have cn(d, κ) ≤ δ. There may

be many decision rules that map within our approximation to the δ−level set, so our theoretical results will

be applicable to a large number of decision rules. As a by product of our analysis, we will also show that

for certain values of δ the eME rule will be contained in the δ−level set with probability at least κ. Again,

the results of this section do not impose any restrictions on the underlying class of functions H`b, and are

applicable even when Γ is not PAMPAC learnable.

To introduce our results for the δ−level set, we must first introduce some additional notation. In partic-

ular, define:

En(γ) := sup
γ∈Γ

inf
s∈S

Î[ϕ](γ, s)− inf
s∈S

Î[ϕ](γ, s) = sup
γ∈Γ

Î`b[ϕ](γ)− Î`b[ϕ](γ), (3.86)

and for δ > 0 define the set:

Gn(δ) := {γ ∈ Γ : En(γ) ≤ δ}. (3.87)

The set Gn(δ) represents the empirical version of the δ−level set.

The following theorem shows that, for sufficiently large δ, the δ−level set is contained within an enlarge-

ment of, and contains a contraction of, the empirical δ−level set with high probability.

Theorem 3.5.2. Suppose that Assumptions 3.2.1, 3.2.2, 3.2.3, and 3.3.1 hold. Also suppose that ϕ : V →
[ϕ`b, ϕub] ⊂ R is a bounded, measurable function, and that for each γ ∈ Γ, the random sets G−(·, θ) and

G?(·, θ, γ) are almost-surely non-empty for each θ ∈ Θ∗. Let H <∞ satisfy |h| ≤ H for every h ∈ H`b, and

suppose that {(yi, zi)}ni=1 is i.i.d. from some distribution PY,Z satisfying our assumptions. Define:

H′n,`b(δ) := {h`b(·, ·, θ, γ, λ)− h`b(·, ·, θ′, γ′, λ′) : θ, θ′ ∈ Θ, γ, γ′ ∈ Gn(δ), λ, λ′ ∈ {0, 1}J},

where H′n,`b(δ) has a uniform bound H
′
n(δ) ≤ 2H < ∞. Furthermore, let tj :=

√
c1 log(c2j) with c1 = 5

and c2 = (3/(2(1 − κ)))2/5, and let {δj}∞j=0 be a sequence decreasing to zero with δ0 > 2H. Choose some

a ∈ (1,∞), let b = 2− 1/a, and let:

Tn(δ) :=

2||Rn||(H′n,`b(bδj)) +
3tjH

′
n(bδj)√
n

, if δ ∈ (δj+1, δj ] for some j ≥ 0

0, otherwise,
(3.88)
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and:

T [n(σ) := sup
δ≥σ

Tn(δ)

δ
, (3.89)

T ]n(η) := inf
{
σ > 0 : T [n(σ) ≤ η

}
. (3.90)

Finally, set δ∗ > T ]n(1− 1/a). Then for any δ ≥ aδ∗ we have:

inf
PY,Z∈PY,Z

P⊗nY,Z (Gn(δ/a) ⊆ G ∗(δ) ⊆ Gn(bδ)) ≥ κ.

Proof. See Appendix 3.B. �

Theorem 3.5.2 closely mimics results in the statistical learning literature, namely in the problem of

bounding excess risk in empirical risk minimization problems. In particular, the proof of the result uses

techniques developed by Koltchinskii (2006) and Koltchinskii (2011), where the latter gives a textbook

treatment.35 Theorem 3.5.2 gives a novel application of these techniques to the problem of policy choice in

the presence of partial identification. Similar to the other results in this paper, Theorem 3.5.2 relies crucially

on the form of the lower envelope function from Theorem 3.3.1. Again Assumption 3.3.1 is required, since

Theorem 3.5.2 requires a finite (and known) value for the penalty parameter µ∗.

Intuitively, Theorem 3.5.2 says that for a suitably large value of δ the δ−level sets Gn(δ) of the function

En(·) can be used to approximate the δ−level sets G ∗(·) of the function E ∗(·). The substantial component

of the results is the selection of such a “suitably large value of δ.” In particular, the value of δ needed for

our approximation to work must be larger than the value of δ∗ from the Theorem, where δ∗ is related to the

solution of a fixed point equation. The connection of the functions Tn( · ), T [n( · ) and T ]n( · ) to fixed point

equations is illustrated in Figure 3.4 and is described in its associated caption. As illustrated in the Figure,

the function Tn(δ) is a left-continuous step function that is greater than or equal to zero on the interval

[0, δ0], and zero otherwise.

The proof of Theorem 3.5.2 relies on Lemma 3.5.1, and the best way to understand Theorem 3.5.2 is to

first understand Lemma 3.5.1.

Lemma 3.5.1. Suppose that the assumptions of Theorem 3.5.2 all hold. Define:

H′`b(δ) := {h`b(·, ·, θ, γ, λ)− h`b(·, ·, θ′, γ′, λ′) : θ, θ′ ∈ Θ, γ, γ′ ∈ G ∗(δ), λ, λ′ ∈ Λ},

where H′`b(δ) has a uniform bound H
′
(δ) ≤ 2H < ∞. Furthermore, let tj :=

√
c1 log(c2j) with c1 = 5 and

c2 = (3/(2(1− κ)))2/5, and let {δj}∞j=0 be a sequence decreasing to zero with δ0 > 2H. Also, let:

T (δ) :=

2||Rn||(H′`b(δj)) +
3tjH

′
(δj)√
n

, if δ ∈ (δj+1, δj ],

0, otherwise,
(3.91)

and:

T [(σ) := sup
δ≥σ

T (δ)

δ
, (3.92)

T ](η) := inf
{
σ > 0 : T [(σ) ≤ η

}
. (3.93)

35The [− and ]−transforms are taken from Koltchinskii (2006), and the properties of these transforms can be found in
Appendix A.3. of Koltchinskii (2011).
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Figure 3.4: This figure illustrates step (iv) in the procedure to determine the δ−level set. After choosing a decreasing
sequence {δj}∞j=0, the policymaker finds the value δ∗ such that δ∗ > T ]n(1 − 1/a). In the figure, this occurs in the
interval (δ1, δ0] (although, of course, this need not be the case). The figure also illustrates the fact that Tn(δ) is a step
function. Finally, the figure illustrates how the [− and ]−transforms of Tn(δ) are related to fixed point-equations. In
particular, the figure illustrates the fixed point of Tn(δ) = δ, which is given exactly by T ]n(1). In addition, the fixed
point of Tn(δ) = δ(1− 1/a) is given by T ]n(1− 1/a).

Finally, suppose δ∗∗ > T ](1− 1/a) for some a ∈ (1,∞). Then for any δ ≥ aδ∗∗ we have:

inf
PY,Z∈PY,Z

P⊗nY,Z (Gn(δ/a) ⊆ G ∗(δ) ⊆ Gn((2− 1/a)δ)) ≥ κ.

Proof. See Appendix 3.B. �

Note that Lemma 3.5.1 is very similar to Theorem 3.5.2, with a major exception being that the class of

functions H′`b(δ) in Lemma 3.5.1 differs from the class of functions H′n,`b(δ) in Theorem 3.5.2. Note that

H′n,`b(δ) represents a “feasible version” of H′`b(δ), since H′`b(δ) depends on the unknown δ−level set G ∗(δ),

where H′n,`b(δ) depends on the empirical δ−level set Gn(δ).

A heuristic proof may help provide some sense of how these results work. A necessary step in proving

either Theorem 3.5.2 or Lemma 3.5.1 is to relate the quantities En(γ) and E ∗(γ), which is exactly what is

done in the proof of Lemma 3.5.1. Among other things, the proof of Lemma 3.5.1 demonstrates that an

important object connecting the quantities En(γ) and E ∗(γ) is given by:

δ 7→ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(δ)

sup
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| ,

(3.94)

where:

Pnh`b(·, θ, γ, λ) :=
1

n

n∑
i=1

h`b(yi, zi, θ, γ, λ), Ph`b(·, θ, γ, λ) :=

∫
h`b(y, z, θ, γ, λ) dPY,Z .
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The quantity (3.94) is easily seen to be the sup-norm of a particular empirical process. Note that this

empirical process depends on unknown population quantities through both G ∗(δ) and through the functions

Ph`b(·, θ, γ, λ) and Ph`b(·, θ′, γ′, λ′), which depend on the unknown true probability measure. While the

dependence on G ∗(δ) is unavoidable for now, the dependence on Ph`b(·, θ, γ, λ) and Ph`b(·, θ′, γ′, λ′) can be

removed by working with the function T (δ) from (3.91).36 Thus, the function T (δ) in Lemma 3.5.1—which is

slightly different from Tn(δ) in Theorem 3.5.2—is constructed to serve as an upper envelope of the quantity

in (3.94), for every δ ∈ [0, δ0], on some event En with probability at least κ.

With (3.94) replaced by its upper bound T (δ), the proof of Lemma 3.5.1 then shows that, if σ := E ∗(γ),

the following inequalities hold on the event En:

E ∗(γ) ≤ En(γ) + T (σ), (3.95)

En(γ) ≤ E ∗(γ) + T (σ). (3.96)

Now note that if δ∗∗ = T ](1−1/a)+ε for any ε > 0, then T (δ) ≤ (1−1/a) ·δ for every δ ≥ δ∗∗. Furthermore,

by construction the value of δ∗∗ will be close to the smallest possible value for which this is true. Now fix

any γ with σ = E ∗(γ) ≥ δ∗∗. Then clearly:

T (σ) ≤
(

1− 1

a

)
E ∗(γ), (3.97)

Combining this result with (3.95) and (3.96) we obtain that for any γ satisfying E ∗(γ) ≥ δ∗∗ we have:

E ∗(γ) ≤ aEn(γ), (3.98)

En(γ) ≤ bE ∗(γ). (3.99)

The remainder of the proof of Lemma 3.5.1 is dedicated to showing that the following inequalities hold for

any γ ∈ Γ on the event En:37

E ∗(γ) ≤ a (En(γ) ∨ δ∗∗) , (3.100)

En(γ) ≤ b (E ∗(γ) ∨ δ∗∗) , (3.101)

After these inequalities are established, it is straightforward to argue that Gn(δ/a) ⊆ G ∗(δ) ⊆ Gn(bδ) on

the event En when δ ≥ aδ∗∗. Intuitively, the proof of Theorem 3.5.2 then shows that H′`b(δ), T (·) (and its

[− and ]−transform) and δ∗∗ defined in Lemma 3.5.1 can be replaced with their feasible versions H′n,`b(δ),
Tn(·) (and its [− and ]−transform) and δ∗ defined in Theorem 3.5.2.

Theorem 3.5.2 suggests the following procedure to approximate the δ−level set. The policymaker begins

by computing En(γ) as a function of γ (for example, by establishing a grid over Γ). The policymaker fixes

some value a ∈ (1,∞) and constructs a sequence {δj}∞j=0 decreasing to zero with (1 − 1/a)δ0 > 2H. In

general the procedure will give a tighter bound if the sequence {δj}∞j=0 has small initial increments. The

policymaker then computes δ∗ > T ]n(1− 1/a). This is done by the following procedure:

(i) The policymaker takes n i.i.d. draws of a Rademacher random variable ξ.

(ii) At the jth step (beginning at step 0) the policymaker uses En(γ) to compute the Rademacher complexity

36Note that, technically speaking, the dependence of (3.94) on Ph`b(·, θ, γ, λ) and Ph`b(·, θ′, γ′, λ′) is removed using a
symmetrization inequality (c.f. Van Der Vaart and Wellner (1996) Lemma 2.3.1) and a Hoeffding-type concentration inequality,
which leads exactly to the upper-bound T (δ), which holds with high probability.

37Note that the first inequality is trivial, since (3.98) is satisfied when E ∗(γ) ≥ δ∗∗, and if E ∗(γ) ≤ δ∗∗, then E ∗(γ) ≤ aδ∗∗,
since a > 1. The second of these inequalities is non-trivial, and relies on an auxiliary result given by Lemma 3.B.9 in the
Appendix.
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||Rn||(H′n,`b(bδj)) with the formula (3.81).

(iii) The policymaker uses En(γ) to compute a uniform upper bound Hn(δj) for H′n,`b(δj) (or she can simply

use 2H).

(iv) The policymaker determines if there is any value δ ∈ (δj+1, δj ] such that Tn(δj)/δ ≥ 1− 1/a.

� If so, the policymaker stops and sets δ∗ = δ + η, where η > 0 and δ ∈ (δj+1, δj ] is equal to any

value satisfying Tn(δj)/δ ≤ 1− 1/a.

� If not, the policymaker repeats steps (i) and (ii) for iteration j + 1.

An illustration of this step is provided in Figure 3.4. By Theorem 3.5.2, the policymaker then knows that for

every δ ≥ δ∗, the δ−minimal set G (δ) will be contained within the sample analogue δ−minimal set Gn(bδ),

and will contain the sample analogue δ−minimal set Gn(δ/a) with probability at least κ. Note that the

computational bottleneck in this procedure arises from repeatedly computing the Rademacher complexity.

In addition to being interesting in its own right, Theorem 3.5.2 also sheds light on the results from the

previous subsection. In particular, the proof of Theorem 3.5.2 and Lemma 3.B.9 lead to the following result,

which is stated as a corollary of Theorem 3.5.2.

Corollary 3.5.1. Suppose the assumptions of Theorem 3.5.2 hold, and let δ∗ be as in Theorem 3.5.2. For

any ε > 0 let γ̂ ∈ Γ be the policy selected by the eME decision rule. If δ ≥ δ∗ ≥ ε > 0, then:

inf
PY,Z∈PY,Z

P⊗nY,Z (E ∗(γ̂) ≤ δ) ≥ κ.

That is γ̂ ∈ G ∗(δ) with high probability when δ ≥ δ∗ ≥ ε > 0.

This result shows that, if ε ≤ δ∗ then our eME rule from the previous subsection will be contained in the

δ−level set G ∗(δ) when δ ≥ δ∗ with high probability. This should serve as some additional justification for

using the eME rule, since it shows that, when both δ∗ and ε are small, the procedure suggested by Theorem

3.5.2 will not lead to decision rules that vastly outperform the eME rule.

3.6 Conclusion

The purpose of the paper is to develop a general and novel framework for bounding counterfactual quantities

and for making policy decisions. Our framework is applicable in models that partially identified and/or

incomplete. Furthermore, we do not require parametric distributional assumptions for the latent variables,

and we allow for moment conditions that depend on latent variables. We introduce the policy transform,

and argue that many counterfactual quantities can be written as the policy transform of some function.

We then introduce a preference relation that respects weak dominance, and discuss the problem of policy

choice using a framework similar to the PAC model of learnability from computational learning theory. Our

theoretical results are divided into those that are applicable ex-ante (i.e. before observing the sample) and

ex-post (i.e. after observing the sample). For our ex-ante results, we introduce the notion of “learning” a

policy space, and provide sufficient conditions for a policy space to be learnable. For our ex-post results, we

provide theoretical guarantees on the performance of particular policy rules. Throughout the paper we also

demonstrate how to apply the results to a simultaneous discrete choice example and a program evaluation

example.

There are many obvious extensions of this work that might be interesting. This paper has been partic-

ularly focused on theoretical developments, with examples serving mainly a pedagogical purpose. Further
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development of the examples and empirical applications are needed to clearly illustrate and fully investigate

the strengths and weaknesses of the method in practice. In addition, the paper has been largely silent on

implementation, which may be computationally complex in certain environments. Further development of

efficient algorithms to implement the procedures is clearly needed. Finally, the relation between PAC learn-

ability and the literature on frequentist decision theory requires further investigation and clarification. We

believe all of these extensions to be fruitful avenues of future research.
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Appendix 3.A Preliminaries

3.A.1 Preliminaries on Random Set Theory

This Appendix introduces some key elements of random set theory. Since measurability issues play a signif-

icant role in random set theory, we begin by providing the definition of an Effros-measurable multifunction,

and show its connection with the definition of a random set.

Definition 3.A.1 (Effros-Measurability, Random Set). Let (Ω,A, P ) be a probability space, let V be a Polish

space, and let OV denote the collection of all open sets on V. A multifunction V : Ω→ FV is called Effros-

measurable if for every A ∈ OV we have V −(A) := {ω ∈ Ω : V (ω) ∩ A 6= ∅} ∈ A. An Effros-measurable

closed-valued multifunction on a probability space (Ω,A, P ) is called a random closed set.

From this definition, we see that a random closed set is an Effros-measurable closed multifunction which

takes elements from the underlying probability space to the collection of closed sets on some Polish space

V. An Effros-measurable closed multifunction is also sometimes called weakly measurable.38 When the

underlying probability space (Ω,A, P ) is complete Effros-measurability is equivalent to both (i) V −(B) ∈ A

for all B ∈ B(V) (Borel measurability) and (ii) V −(F ) ∈ A for all F ∈ FV (strong measurability).39 Our

main interest in the paper is in the case when V is a subset of finite-dimensional euclidean space, although

the framework is more general.

While Effros-measurability is the proper notion of measurability for many of the results, it can be difficult

to verify. There are other conditions that are sufficient for Effros measurability, but we find one condition

to be particularly helpful in the examples. Let d denote the metric on a Polish space V, and let V : Ω→ FV
be a multifunction. The distance to the set V (ω) on V is given by:

d(v,V (ω)) := inf{d(v, v′) : v′ ∈ V (ω)}.

By a result of Himmelberg (1975), Effros measurability of the multifunction V is equivalent to measurability

of d(v,V (ω)) (as a random variable from Ω to [0,∞]) for each v ∈ V.

Throughout the paper it is also important to understand what it means for two random sets to be

identically distributed, which is provided in the next definition.

Definition 3.A.2 (Identically Distributed Random Sets). Let (Ω,A, P ) be a probability space, let V be a

Polish space. We say that two random sets V and V ∗ are identically distributed, denoted by V ∼ V ∗, if for

every A ∈ OV we have P (ω : V (ω) ∩A 6= ∅) = P (ω : V ∗(ω) ∩A 6= ∅).

Finally, an important concept in random set theory is that of a selection from a random set. Intuitively,

a random set V can be understood as a collection of random variables V satisfying V (ω) ∈ V (ω) P−a.s.

Such random variables are called selections from the random set V , which is made precise in the following

definition.

Definition 3.A.3 (Selections, Conditional Selections). A random element V : Ω → V is called a (measur-

able) selection of V if V (ω) ∈ V (ω) for P−almost all ω ∈ Ω. The family of all measurable selections of a

random set V will be denoted by Sel(V ).

Although it is suppressed in the notation, the family of selections Sel(·) depends both on the distribution

of the random set V , and on the underlying probability space. Indeed, two identically distributed random

sets on the same probability space may have different families of selections.40 However, the weak closed

38See Aliprantis and Border (2006) Ch. 18
39See Molchanov (2017) Theorem 1.3.3, p.59.
40See Example 1.4.2 in Molchanov (2017), p. 79.
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convex hulls of the family of selections from two random closed sets on the same probability space coincide.

In addition, when the underlying probability space is non-atomic, it is not necessary to take convex hulls.

See the discussion following Definition 3.3.1 in the main text.

3.A.2 PAC Learnability

As described in the introduction, our definition of learnability is related to the definition of learnability pre-

scribed in Valiant (1984). It will thus be useful to understand the concept of learnability from computational

learning theory. We will omit technical details in the pursuit of clarity.

In a supervised learning problem, the researcher is presumed to have an i.i.d. sample ψ = ((yi, zi))
n
i=1

from the true measure PY,Z . The researcher is also assumed to have a class of functions F in mind, called

the hypothesis space. The researcher’s objective is to select a function f : Z → Y, called a hypothesis (or a

classifier or a predictor), from the hypothesis space F that can accurately predict values in Y given values

in Z. The performance of a given function f ∈ F is measured according to a loss function. That is, it is

assumed the researcher has some function L : Y × Y → R such that L(y, f(z)) measures the loss incurred

when a prediction f(z) is made and the true value of the outcome is y. The problem of selecting a good

hypothesis f is then translated into the problem of choosing f ∈ F to minimize expected loss, or risk. A

decision rule in this context is a measurable map d : Ψn → F that selects a hypothesis from the hypothesis

space; in learning theory, this decision rule is called an algorithm.

So far the reader should note a resemblance to decision problems seen in statistics and econometrics.

However, important differences between the fields arise when evaluating a given statistical decision rule. In

particular, computer scientists are interested in rules that achieve close to the minimum possible risk with

high probability in finite samples. To define this rigorously, let f̂ ∈ F be the hypothesis selected by some

decision rule (or algorithm) d : Ψn → F . Since f̂ ∈ F depends on the observed sample, ex-ante it will be a

random variable. Now fix any values (c, κ) ∈ R++ × (0, 1). Then f̂ closely approximates the performance of

the optimal decision rule in finite samples if:

inf
PY,Z∈PY,Z

P⊗nY,Z

(∣∣∣∣ inf
f∈F

E[L(y, f(z))]− E[L(y, f̂(z))]

∣∣∣∣ ≤ c) ≥ κ, (3.102)

for a small value of c ∈ R+ and a large value of κ ∈ (0, 1) at sample size n. Here PY,Z is the collection

of all Borel probability measures on Y × Z, and thus the performance of a decision rule is uniform over

all possible distributions PY,Z ∈ PY,Z .41 We can now introduce the notion of (agnostic) PAC learnability

initially proposed by Haussler (1992).

Definition 3.A.4 (Agnostic PAC Learnability). A hypothesis class F is (agnostic) probably approximately

correct (PAC) learnable with respect to the loss function L if there exists a function ζF : R+×(0, 1)→ N such

that, for any (c, κ) ∈ R++ × (0, 1) → N, if n ≥ ζF (c, κ) then there is some decision procedure d : Ψn → F
such that f̂ := d(ψ) satisfies (3.102).

Remark 3.A.1. This definition omits an important component of the original definition of PAC learnability

found in the paper of Valiant (1984), which also requires that the algorithm (decision rule) can be processed

in polynomial time (relative to the length of its input). For some this may be a serious omission, as the

requirement that an algorithm can be efficiently processed is seen as a core component of learnability in

computational learning theory.42

41Note that taking the outer probability is necessary because the sampling uncertainty from the choice of f̂ is not resolved
by the inner expectation.

42This perspective is apparent in Valiant (2013).
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In other words, a hypothesis space is (agnostic) PAC learnable if we can guarantee that (3.102) holds for

any choice of the pair (c, κ) ∈ R++× (0, 1) for large enough n. Here c is called the error tolerance parameter,

and κ is called the confidence parameter. The “agnostic” component of the definition refers to the fact that

the hypothesis class F may or may not include the true labelling function f∗ : Z → Y; indeed, such a “true”

labelling function may not even exist.

One major advantage of the PAC framework—relative to other frequentist methods of evaluating decision

rules—is its analytical tractability and amenability to analysis via concentration inequalities, and techniques

from empirical process theory. Indeed, in the case when the decision rule d : Ψn → F corresponds to the

empirical risk minimization rule, it is well known that PAC learnability is implied by uniform convergence

(over both PY,Z and F) of the empirical risk to the population risk.43 In specific learning problems this

uniform convergence is equivalent to learnability (see the discussion in Alon et al. (1997) and Shalev-Shwartz

et al. (2010)). This means well-developed tools in empirical process theory can be used to establish the

learnability of a particular class of functions. Intuitively, whether or not a particular class of functions F
is learnable depends on the “complexity” of the function class. There are various ways to measure the

complexity of F , some of which are encountered in the current paper. In general, classes that exhibit less

complexity are easier to learn than classes that exhibit more complexity, and if a class of functions is too

complex, it may not be learnable.

3.A.3 Comparison of PAC Learnability and Minimax Regret

In this subsection we consider a brief comparison between the PAC criterion and the minimax regret criterion

in the framework of Wald (1950). Let us consider a more general loss function than the above, given by

L : X × F → R, where X = Y × Z. The expected loss when using the function f ∈ F when the true

probability measure on X is P is given by: ∫
L(X, f) dP.

Now suppose that a decision d(ψ) = f̂ is made on the basis of i.i.d. data ψ = {(yi, zi)}ni=1. Then the regret

associated with decision d(ψ) when the true probability measure on X is P is given by:

Rn(d, P ) := EP⊗
[∫

L(X, d(ψ)) dP − inf
h∈H

∫
L(X, f) dP

]
.

The minimax regret criterion is:

inf
d∈D

sup
P∈P

Rn(d, P ),

where D is the collection of possible decision rules and P is the set of all probability measures on X . The

following proposition then follows from two simple applications of Markov’s inequality:

Proposition 3.A.1. Suppose that the environment is as above, and that L is uniformly bounded by some

value L. Then F is (agnostic) PAC-learnable if and only if there exists a decision rule d ∈ D such that:

sup
P∈P

Rn(d, P )→ 0,

as n→∞.

43See, for example, Shalev-Shwartz and Ben-David (2014) Lemma 4.2.
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This proposition shows that any decision rule obtaining zero asymptotic regret uniformly over P also

satisfies the definition of (agnostic) PAC learnability. Furthermore, any decision rule that satisfies the

definition of (agnostic) PAC learnability obtains an asymptotic regret of zero.

While this comparison is basic, it demonstrates that there are likely even deeper connections between

the PAC learning model of Valiant (1984) and the framework for making statistical decisions proposed by

Wald (1950). We believe this to be an important avenue of future research.

Appendix 3.B Proofs

Remark 3.B.1 (Common Notation). To avoid repetition we introduce some common notation for use in

the proofs of Theorem 3.4.1, Theorem 3.5.1, Lemma 3.5.1 and Lemma 3.B.9. In particular, for any θ ∈ Θ

and γ ∈ Γ let λ∗(θ, γ), and λ̂(θ, γ) satisfy:

Ph`b(·, θ, γ, λ∗(θ, γ)) = max
λ∈Λ

Ph`b(·, θ, γ, λ), (3.103)

Pnh`b(·, θ, γ, λ̂(θ, γ)) = max
λ∈Λ

Pnh`b(·, θ, γ, λ). (3.104)

Now for any γ ∈ Γ, let θ∗ and θ̂ satisfy:

Ph`b(·, θ∗(γ), γ, λ∗(θ∗(γ), γ)) ≤ inf
θ∈Θ

Ph`b(·, θ, γ, λ∗(θ, γ)) + ε, (3.105)

Pnh`b(·, θ̂(γ), γ, λ̂(θ̂(γ), γ)) ≤ inf
θ∈Θ

Pnh`b(·, θ, γ, λ̂(θ, γ)) + ε, (3.106)

Finally, let γ∗ and γ̂ satisfy:

Ph`b(·, θ∗(γ∗), γ∗, λ∗(θ∗(γ∗), γ∗)) ≥ sup
γ∈Γ

Ph`b(·, θ∗(γ), γ, λ∗(θ∗(γ), γ))− ε, (3.107)

Pnh`b(·, θ̂(γ̂), γ̂, λ̂(θ̂(γ̂), γ̂)) ≥ sup
γ∈Γ

Pnh`b(·, θ̂(γ), γ, λ̂(θ̂(γ), γ))− ε. (3.108)

With these definitions, it is straightforward to show:

sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ) ≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ) + 3ε, (3.109)

sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ) ≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ) + 3ε. (3.110)

Furthermore, we can always choose γ∗ and γ̂ to satisfy:

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ) ≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ), (3.111)

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ) ≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ). (3.112)

Remark 3.B.2 (Measurability). We will not comment on measurability issues in every proof, and instead

we refer readers to the discussion Appendix 3.B.2 (namely, Proposition 3.B.1 and Corollary 3.B.1). There

it is shown that certain quantities in this paper that are not typically (Borel) measurable are still universally

measurable. This allows us to use outer measures to resolve measurability issues, although this is left implicit

in many of the proofs. However, we also note that all measurability issues can also be resolved by restricting

Θ and Γ to have at most countably many points.
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3.B.1 Proofs of the Main Results

Proof of Proposition 3.2.1. Recall by assumption we have γ 7→ infs∈S I[ϕ](γ, s) is universally measurable.

By (Borel) measurability of each decision rule d : Ψn → Γ (and thus universal measurability), and the

fact that universally measurable functions are closed under composition, this implies that the map ψ 7→
infs∈S I[ϕ](d(ψ), s) is universally measurable. The result then follows from Lemma 3.B.2 after noting that

supγ∈Γ infs∈S I[ϕ](γ, s) is a constant for each PY,Z ∈ PY,Z (and thus plays the role of “c(P )” from Lemma

3.B.2). �

Proof of Lemma 3.3.1. Fix a value of δ > 0 satisfying Assumption 3.3.2. We will focus on proving (3.48)

holds, as the proof of (3.49) is similar. By iterated application of Lemma 3.B.3, (3.48) can be rewritten as:

inf
θ∗∈Θ∗

∫
inf

u∈G−(y,z,θ∗)
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) dPY,Z −

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) dPY,Z ≤ C2d(θ,Θ∗).

Note that this inequality is trivially satisfied for any C2 ≥ 0 when θ ∈ Θ∗. Thus, it suffices to focus on the

case when θ ∈ Θ∗δ \Θ∗. Furthermore, for this latter case it suffices to find a value of C2 ≥ 0 satisfying:∫ (
inf

u∈G−(y,z,θ1)
inf

y?∈G?(y,z,u,θ1,γ)
ϕ(v)− inf

u∈G−(y,z,θ2)
inf

y?∈G?(y,z,u,θ2,γ)
ϕ(v)

)
dPY,Z ≤ C2d(θ1, θ2),

for any θ1, θ2 ∈ Θ∗δ . However, to find C2 in the previous display, it suffices to find C2 such that:

inf
u∈G−(y,z,θ1)

inf
y?∈G?(y,z,u,θ1,γ)

ϕ(v)− inf
u∈G−(y,z,θ2)

inf
y?∈G?(y,z,u,θ2,γ)

ϕ(v) ≤ C2d(θ1, θ2), (3.113)

(y, z)− a.s. Fix any ε > 0 and let (y, z) ∈ Y ×Z be any pair (outside the null sets in (3.50) and (3.51)). For

any θ1, θ2 ∈ Θ∗δ let u∗1, u∗2, y∗1 and y∗2 satisfy:

u∗1 ∈ G−(y, z, θ1), y∗1 ∈ G?(y, z, u∗1, θ1, γ),

u∗2 ∈ G−(y, z, θ2), y∗2 ∈ G?(y, z, u∗2, θ2, γ),

and:

ϕ(y, z, u∗1, y
∗
1) ≤ inf

u∈G−(y,z,θ1)
inf

y?∈G?(y,z,u,θ1,γ)
ϕ(v) + ε,

ϕ(y, z, u∗2, y
∗
2) ≤ inf

u∈G−(y,z,θ2)
inf

y?∈G?(y,z,u,θ2,γ)
ϕ(v) + ε.

For simplicity we will denote v∗1 := (y, z, u∗1, y
∗
1) and v∗2 := (y, z, u∗2, y

∗
2). Now, by Proposition 3C.1 in

Dontchev and Rockafellar (2009), condition (3.51) implies:

dH(G?(y, z, u, θ1, γ),G?(y, z, u, θ2, γ)) ≤ `2d(θ1, θ2), ∀θ1, θ2 ∈ Θ∗δ

(y, z, u)−a.s.44 Thus, since y∗2 ∈ G?(y, z, u, θ2, γ) by assumption, there exists y1 ∈ G?(y, z, u, θ1, γ) such that

d(y1, y
∗
2) ≤ `2d(θ1, θ2). Furthermore, by Proposition 3C.1 in Dontchev and Rockafellar (2009), condition

44Recall the Hausdorff distance between two non-empty subsets A and B of a metric space (X , d) is given by:

dH(A,B) := max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.
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(3.50) implies:

dH(G−(y, z, θ1),G−(y, z, θ2)) ≤ `1d(θ1, θ2), ∀θ1, θ2 ∈ Θ∗δ .

Thus, since u∗2 ∈ G−(y, z, θ2) by assumption, there exists u1 ∈ G−(y, z, θ1) such that d(u1, u
∗
2) ≤ `1d(θ1, θ2).

Now let us define v1 := (y, z, u1, y1). Then we have:

inf
u∈G−(y,z,θ1)

inf
y?∈G?(y,z,u,θ1,γ)

ϕ(v)− inf
u∈G−(y,z,θ2)

inf
y?∈G?(y,z,u,θ2,γ)

ϕ(v)

≤ ϕ(v∗1)− ϕ(v∗2) + ε

≤ ϕ(v1)− ϕ(v∗2) + 2ε

≤ Lϕd((y1, u1), (u∗2, y
∗
2)) + 2ε

≤ Lϕ max{d(y1, y
∗
2), d(u1, u

∗
2)}+ 2ε

≤ Lϕ max{`1, `2}d(θ1, θ2) + 2ε,

which holds for all θ1, θ2 ∈ Θ∗δ .
45 Since ε > 0 is arbitrary, we conclude that C2 in (3.113) can be taken equal

to Lϕ max{`1, `2}. This completes the proof. �

Proof of Theorem 3.3.1. We will show the lower bound, as the proof for the upper bound is symmetric. We

will prove the following sequence of equalities and inequalities:

I[ϕ](γ) :=

∫
ϕ(v) dPVγ

≥ inf
θ∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ (3.114)

= inf
θ∈Θ

inf
PU|Y,Z∈PU|Y,Z(θ)

(
inf

PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ

+ µ∗
J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
(3.115)

= inf
θ∈Θ

inf
PU|Y,Z∈PU|Y,Z(θ)

(∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) dPY,Z,U

+ µ∗
J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
(3.116)

= inf
θ∈Θ

∫ (
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
dPY,Z (3.117)

= inf
θ∈Θ

max
λj∈{0,1}

∫ (
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z . (3.118)

Inequality (3.114) is obvious. Equality (3.115) follows from Lemma 3.B.4. Equalities (3.116) and (3.117)

follow from Lemma 3.B.3. Finally, (3.118) follows from Lemma 3.B.5. �

Proof of Theorem 3.4.1. Let F be a class of real-valued functions, and let ψ = ((yi, zi))
n
i=1 denote a particular

45Here we take the product metric as the sup metric; that is, if (X , d) and (X ′, d′) are two metric spaces, then the product
metric d∞ on X × X ′ is defined as d∞((x1, x′1), (x2, x′2)) = max

{
d(x1, x2), d′(x′1, x

′
2)
}

.
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sample vector taking values in the sample space Ψn. For any f, f ′ ∈ F define the norm:

||f − f ′||ψ,2 :=

(
n∑
i=1

(f(yi, zi)− f ′(yi, zi))
2

)1/2

.

Recall that:

h`b(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

inf
y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
.

For notational simplicity we will define:

Pnh`b(·, θ, γ, λ) :=
1

n

n∑
i=1

inf
ui∈G−(yi,zi,θ)

inf
y?i ∈G?(yi,zi,ui,θ,γ)

(
ϕ(vi) + µ∗

J∑
j=1

λjmj(yi, zi, ui, θ)

)
,

Ph`b(·, θ, γ, λ) :=

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z .

For any decision rule d : Ψn → Γ and any PY,Z ∈ PY,Z , we have by Markov’s inequality and Theorem 3.3.1:46

P⊗nY,Z

(
sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s) ≥ c
)
≤ 1

c
E
(

sup
γ∈Γ

inf
s∈S

I[ϕ](γ, s)− inf
s∈S

I[ϕ](d(ψ), s)

)
=

1

c
E
(

sup
γ∈Γ

I`b[ϕ](γ)− I`b[ϕ](d(ψ))

)
. (3.119)

Now note by symmetrization (e.g. Van Der Vaart and Wellner (1996) Lemma 2.3.1) we have:

sup
γ∈Γ

sup
θ∈Θ

max
λ∈Λ

∣∣∣∣E (Pnh`b(·, θ, γ, λ)− Ph`b(·, θ, γ, λ))

∣∣∣∣
≤ E sup

γ∈Γ
sup
θ∈Θ

max
λ∈Λ

∣∣∣∣Pnh`b(·, θ, γ, λ)− Ph`b(·, θ, γ, λ)

∣∣∣∣ ≤ 2E||Rn||(H`b), (3.120)

where the final outer expectation is a joint expectation that is also taken over the Rademacher random

variables. Now let λ∗(θ, γ), λ̂(θ, γ), θ∗(γ), θ̂(γ), γ∗ and γ̂ be as in Remark 3.B.1, and set d(ψ) = γ̂. Then

we have:

EI`b[ϕ](d(ψ))

= E inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, d(ψ), λ), (by Theorem 3.3.1),

= E inf
θ∈Θ

Ph`b(·, θ, d(ψ), λ∗(θ, d(ψ))), (since λ∗ is optimal at P for any (θ, γ)),

= EPh`b(·, θ∗(d(ψ)), d(ψ), λ∗(θ∗, d(ψ)))− ε, (since θ∗ is ε−optimal at (P, λ∗) for any γ),

≥ EPh`b(·, θ∗(d(ψ)), d(ψ), λ̂(θ∗(d(ψ)), d(ψ)))− ε, (since λ∗ was optimal at P for any (θ, γ)),

≥ EPnh`b(·, θ∗(d(ψ)), d(ψ), λ̂(θ∗(d(ψ)), d(ψ)))− 2E||Rn||(H`b)− ε, (by (3.120)),

≥ EPnh`b(·, θ̂(d(ψ)), d(ψ), λ̂(θ̂(d(ψ)), d(ψ)))− 2E||Rn||(H`b)− 2ε, (since θ̂ is ε-optimal at (Pn, λ̂) for any γ),

≥ EPnh`b(·, θ̂(γ∗), γ∗, λ̂(θ̂(γ∗), γ∗))− 2E||Rn||(H`b)− 3ε, (since d(ψ) was ε-optimal at (Pn, λ̂, θ̂)),

≥ EPnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− 2E||Rn||(H`b)− 3ε, (since λ̂ was optimal at Pn for any (θ, γ)),

46To be mindful of measurability issues, we can use the outer-measures version of Markov’s inequality given in Lemma 6.10
in Kosorok (2008).

129



www.manaraa.com

≥ EPh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− 4E||Rn||(H`b)− 3ε, (by (3.120)),

≥ EPh`b(·, θ∗(γ∗), γ∗, λ∗(θ∗(γ∗), γ∗))− 4E||Rn||(H`b)− 4ε, (since θ∗ is ε-optimal at (P, λ∗) for any γ),

≥ E sup
γ∈Γ

Ph`b(·, θ∗(γ), γ, λ∗(θ∗(γ), γ))− 4E||Rn||(H`b)− 5ε, (since γ∗ was ε-optimal at (P, λ∗, θ∗)),

≥ E sup
γ∈Γ

inf
θ∈Θ

Ph`b(·, θ, γ, λ∗(θ, γ))− 4E||Rn||(H`b)− 5ε, (since θ∗ was ε-optimal at (P, λ∗) for any γ),

≥ E sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− 4E||Rn||(H`b)− 5ε, (since λ∗ was optimal at P for any (θ, γ)),

≥ E sup
γ∈Γ

I`b[ϕ](γ)− 4E||Rn||(H`b)− 5ε, (by Theorem 3.3.1).

Since ε > 0 can be taken arbitrarily small, we conclude that:

E
(

sup
γ∈Γ

I[ϕ](γ)− I[ϕ](d(ψ))

)
≤ 4E||Rn||(H`b). (3.121)

It thus suffices to bound the Rademacher complexity, given by:

E||Rn||(H`b)

= E

sup
γ∈Γ

sup
θ∈Θ

max
λ∈Λ

∣∣∣∣∣∣ 1n
n∑
i=1

ξi

 inf
ui∈G−(yi,zi,θ)

(
inf

y?i ∈G?(yi,zi,ui,θ,γ)
ϕ(vi) + µ∗

J∑
j=1

λjmj(yi, zi, ui, θ)

)∣∣∣∣∣∣
 .

If H`b is not closed under symmetry, then redefine it as H`b ∪ (−H`b); for our purposes this is without loss

of generality, since this operation can only increase the value of E||Rn||(H`b). We then have from Lemma

3.B.7 that for any ε > 0:

E||Rn||(H`b) ≤
2ε√
n

+ 2Diamψ,2(H`b)
√

logN(ε,H`b, || · ||ψ,2)

n
. (3.122)

Since the class of functions H`b is uniformly bounded, we have Diamψ,2(H`b) <∞. It remains to bound the

metric entropy. To do so, we will define:

HI :=

{
h(·, u, θ, γ, λ) : Y × Z → R :

h(y, z, u, θ, γ) = inf
y?∈G?(y,z,u,θ,γ)

ϕ(v) + µ∗
J∑
j=1

λjmj(y, z, u, θ),

(u, θ, γ, λ) ∈ U ×Θ× Γ× Λ

}
, (3.123)

HII :=

{
h(·, u, θ, γ) : Y × Z → R : h(y, z, u, θ, γ) = inf

y?∈G?(y,z,u,θ,γ)
ϕ(v), (u, θ, γ) ∈ U ×Θ× Γ

}
, (3.124)

HIII := {h(·, u, y?) : Y × Z → R : h(y, z, u, y?) = ϕ(y, z, u, y?), (u, y?) ∈ U × Y?} , (3.125)

HIV :=

h(·, u, θ, λ) : Y × Z → R : h(y, z, u, θ) =

J∑
j=1

λjmj(y, z, u, θ), (u, θ, λ) ∈ U ×Θ× Λ

 . (3.126)
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By Lemma 3.B.6, we have:

N(ε,H`b, || · ||ψ,2) ≤ N(ε/2,HI , || · ||ψ,2).

By Lemma 3.B.8 we also have:

N(ε/2,HI , || · ||ψ,2) ≤ N(ε/2,HII , || · ||ψ,2)N(ε/2,HIV , || · ||ψ,2).

Applying Lemma 3.B.6 again we have:

N(ε/2,HII , || · ||ψ,2) ≤ N(ε/4,HIII , || · ||ψ,2).

Finally, from iterated application of Lemma 3.B.8:

N(ε/2,HIV , || · ||ψ,2) ≤
J∏
j=1

N(ε/(2J),Mj , || · ||ψ,2),

We conclude that:

logN(ε,H`b, || · ||ψ,2) ≤ logN(ε/4,HIII , || · ||ψ,2) +

J∑
j=1

logN(ε/(2J),Mj , || · ||ψ,2)

≤ sup
Q∈Qn

logN(ε/4,HIII , || · ||Q,2) +

J∑
j=1

sup
Q∈Qn

logN(ε/(2J),Mj , || · ||Q,2),

with the supremum taken over all discrete probability measures Qn on X with atoms that have probabilities

that are integer multiples of 1/n. Since by assumption HIII and Mj satisfy the entropy growth condition,

the right side of the previous display is of order o(n). Combining this with (3.122), we see that for any (c, κ)

pair, there exists some n such that 4E||Rn||(H`b) ≤ c(1− κ). Combining this with (3.121) and (3.119), the

proof is complete.

�

Proof of Theorem 3.5.1. Recall that:

h`b(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

inf
y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
.

For notational simplicity we will define:

Pnh`b(·, θ, γ, λ) :=
1

n

n∑
i=1

inf
ui∈G−(yi,zi,θ)

inf
y?i ∈G?(yi,zi,ui,θ,γ)

(
ϕ(vi) + µ∗

J∑
j=1

λjmj(yi, zi, ui, θ)

)
,

Ph`b(·, θ, γ, λ) :=

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z .

We claim that it suffices to set cn(κ) = 2c̃n(ψ, κ) + 5ε, where c̃n(ψ, κ) satisfies:

sup
γ∈Γ

sup
θ∈Θ

max
λ∈Λ

∣∣∣∣Pnh`b(·, θ, γ, λ)− Ph`b(·, θ, γ, λ)

∣∣∣∣ ≤ c̃n(ψ, κ), (3.127)

with probability at least κ/2. Let λ∗(θ, γ), λ̂(θ, γ), θ∗(γ), θ̂(γ), γ∗ and γ̂ be as in Remark 3.B.1 and set

131



www.manaraa.com

d(ψ) = γ̂. Then we have:

I`b[ϕ](d(ψ))

= inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, d(ψ), λ), (by Theorem 3.3.1),

= inf
θ∈Θ

Ph`b(·, θ, d(ψ), λ∗(θ, d(ψ))), (since λ∗ is optimal at P for any (θ, γ)),

= Ph`b(·, θ∗(d(ψ)), d(ψ), λ∗(θ∗, d(ψ)))− ε, (since θ∗ is ε−optimal at (P, λ∗) for any γ),

≥ Ph`b(·, θ∗(d(ψ)), d(ψ), λ̂(θ∗(d(ψ)), d(ψ)))− ε, (since λ∗ was optimal at P for any (θ, γ)),

≥(κ/2) Pnh`b(·, θ∗(d(ψ)), d(ψ), λ̂(θ∗(d(ψ)), d(ψ)))− c̃n(ψ, κ)− ε, (by (3.127)),

≥ Pnh`b(·, θ̂(d(ψ)), d(ψ), λ̂(θ̂(d(ψ)), d(ψ)))− c̃n(ψ, κ)− 2ε, (since θ̂ is ε-optimal at (Pn, λ̂) for any γ),

≥ Pnh`b(·, θ̂(γ∗), γ∗, λ̂(θ̂(γ∗), γ∗))− c̃n(ψ, κ)− 3ε, (since d(ψ) was ε-optimal at (Pn, λ̂, θ̂)),

≥ Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− c̃n(ψ, κ)− 3ε, (since λ̂ was optimal at Pn for any (θ, γ)),

≥(κ/2) Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− 2c̃n(ψ, κ)− 3ε, (by (3.127)),

≥ Ph`b(·, θ∗(γ∗), γ∗, λ∗(θ∗(γ∗), γ∗))− 2c̃n(ψ, κ)− 4ε, (since θ∗ is ε-optimal at (P, λ∗) for any γ),

≥ sup
γ∈Γ

Ph`b(·, θ∗(γ), γ, λ∗(θ∗(γ), γ))− 2c̃n(ψ, κ)− 5ε, (since γ∗ was ε-optimal at (P, λ∗, θ∗)),

≥ sup
γ∈Γ

inf
θ∈Θ

Ph`b(·, θ, γ, λ∗(θ, γ))− 2c̃n(ψ, κ)− 5ε, (since θ∗ was ε-optimal at (P, λ∗) for any γ),

≥ sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− 2c̃n(ψ, κ)− 5ε, (since λ∗ was optimal at P for any (θ, γ)),

≥ sup
γ∈Γ

I`b[ϕ](γ)− 2c̃n(ψ, κ)− 5ε, (by Theorem 3.3.1).

where each inequality “≥(κ/2)” holds with probability at least κ/2. Note that this shows:

sup
γ∈Γ

I`b[ϕ](γ)− I`b[ϕ](γ̂) ≤ 2c̃n(ψ, κ) + 5ε,

with probability at least κ. To satisfy (3.127) it clearly suffices to choose c̃n(ψ, κ) to satisfy:

sup
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

sup
θ∈Θ

max
λ∈Λ

∣∣∣∣Pnh`b(·, θ, γ, λ)− Ph`b(·, θ, γ, λ)

∣∣∣∣ ≥ c̃n(ψ, κ)

)
≤ 1− κ/2. (3.128)

From Koltchinskii (2011) Theorem 4.6 we have for any t > 0:

sup
PY,Z∈PY,Z

P⊗nY,Z

(
sup
γ∈Γ

sup
θ∈Θ

max
λ∈Λ

∣∣∣∣Pnh`b(·, θ, γ, λ)− Ph`b(·, θ, γ, λ)

∣∣∣∣ ≥ 2||Rn||(H`b) +
3tH√
n

)
≤ exp

(
− t

2

2

)
.

Now set:

c̃n(ψ, κ) = 2||Rn||(H`b) +

√
18 ln(2/(2− κ))H

2

n
.

Then we have:

cn(κ) = 4||Rn||(H`b) +

√
72 ln(2/(2− κ))H

2

n
+ 5ε.

Then we conclude (3.83).

�

132



www.manaraa.com

Proof of Theorem 3.5.2. Let T, T [, and T ] be as defined in Lemma 3.5.1. In this proof, it is useful to note

the following facts:

(i) The functions δ 7→ Tn(δ), T (δ) are non-decreasing left-continuous step functions that are greater than

or equal to zero on the interval [0, δ0], and zero otherwise.

(ii) The functions σ 7→ T [n(σ), T [(σ), are non-increasing and left-continuous with their only possible points

of discontinuity at the points {δj}∞j=0.

(iii) The functions η 7→ T ]n(η), T ](η) are non-increasing and continuous.

Now for any η > 0, let:

δ∗ = T ]n(1− 1/a) + η′,

δ∗∗ = T ](1− 1/a) + η,

where η′ = η + ε for some ε > 0. Note that choosing δ∗∗ slightly larger than T ](1 − 1/a) ensures that

T [(δ∗∗) ≤ 1− 1/a. A similar note applies to δ∗ and T ]n(1− 1/a).

From the proof of Lemma 3.5.1 we know there exists an event En with P⊗nY,Z (En) ≥ κ such that on En

we have G ∗(δ) ⊆ Gn(bδ) for every δ ≥ δ∗∗. Thus, for every δ ≥ δ∗∗ we have on En that T (δ) ≤ Tn(δ), which

implies:

T (δ)

δ
≤ Tn(δ)

δ
,

for all δ ≥ δ∗∗. Thus, on En we have T [(σ) ≤ T [n(σ) for any σ ≥ δ∗∗, and in particular we have:

T [(δ∗∗) := sup
δ≥δ∗∗

T (δ)

δ
≤ sup
δ≥δ∗∗

Tn(δ)

δ
=: T [n(δ∗∗), (3.129)

Recall our choice of δ∗∗ ensures that T [(δ∗∗) ≤ 1− 1/a. We can now distinguish two cases on the event En:

1. We have:

sup
δ≥δ∗∗

T (δ)

δ
≤ 1− 1

a
≤ sup
δ≥δ∗∗

Tn(δ)

δ
.

In this case, we have T [n(δ∗∗) ≥ 1−1/a, and thus T ]n(1−1/a) ≥ δ∗∗, so that δ∗ > δ∗∗ (see the definitions

of δ∗ and δ∗∗ above).

2. We have:

sup
δ≥δ∗∗

T (δ)

δ
≤ sup
δ≥δ∗∗

Tn(δ)

δ
< 1− 1

a
.

This implies either (i) T ](1 − 1/a) ≤ T ]n(1 − 1/a) < δ∗∗, or (ii) T ]n(1 − 1/a) < T ](1 − 1/a) < δ∗∗. In

case (i) we clearly have δ∗ ≥ δ∗∗. In case (ii), let:

c := T ](1− 1/a)− T ]n(1− 1/a) > 0.

Then:

δ∗∗ − δ∗ = T ](1− 1/a) + η − T ]n(1− 1/a)− η′
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= c− ε,

where the last line follows from the definition of η′. Now suppose that c > ε for our ε > 0 chosen at the

beginning of the proof. We will show that this produces a contradiction. To understand the approach,

note the value of c does not depend on the value of η > 0, so the assumption that c > ε must trivially

hold for every η > 0. If we can show that c < ε for some η > 0, we will have arrived at our desired

contradiction.

Recall that on En we have T [(σ) ≤ T [n(σ) for any σ ≥ δ∗∗. This implies that, for any r > 0, if

T ](r) ≥ δ∗∗ then T ]n(r) ≥ T ](r). Now choose a value rη ∈ R closest to 1− 1/a such that rη ≤ 1− 1/a

and:

T ](rη) = T ](1− 1/a) + η = δ∗∗.

Such a choice is always possible by continuity of T ], and by the fact that T ] is non-increasing. By

taking η (and thus also δ∗∗) small enough we conclude by continuity of T ] that the point rη can also

always be chosen arbitrarily close to 1− 1/a. Recall by continuity of T ]n that there exists ε′ > 0 such

that T ]n(x) − T ]n(1 − 1/a) < ε whenever (1 − 1/a) < x + ε′. Now by choosing rη ≤ 1 − 1/a such that

1− 1/a < rη + ε′, we have:

c = T ](1− 1/a)− T ]n(1− 1/a)

< T ](rη)− T ]n(1− 1/a)

≤ T ]n(rη)− T ]n(1− 1/a)

< ε.

This of course contradicts the fact that c > ε for every choice of η > 0. We conclude that c ≤ ε, and

since δ∗∗ − δ∗ = c− ε, we have δ∗∗ ≤ δ∗.

We conclude in all cases that δ∗∗ ≤ δ∗ on En. The result then follows directly from Lemma 3.5.1.

�

Proof of Lemma 3.5.1. Recall that:

h`b(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

inf
y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
.

For notational simplicity we will define:

Pnh`b(·, θ, γ, λ) :=
1

n

n∑
i=1

inf
ui∈G−(yi,zi,θ)

inf
y?i ∈G?(yi,zi,ui,θ,γ)

(
ϕ(vi) + µ∗

J∑
j=1

λjmj(yi, zi, ui, θ)

)
,

Ph`b(·, θ, γ, λ) :=

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z .

Define the events:

En,j :=

{
sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(δj)

sup
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| ≤ T (δj)

}
,
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and:

En :=
⋂

{j:δj≥δ∗∗}
En,j . (3.130)

Note the value 2H is an upper bound for any function in H′`b(δ) for any δ > 0. By our choice of δ0 > 2H we

have:

sup
PY,Z∈PY,Z

P⊗nY,Z
(
Ecn,0

)
= 0.

Furthermore, from the uniform version of Hoeffding’s inequality (e.g. Koltchinskii (2011) Theorem 4.6, p.71)

we have:

sup
PY,Z∈PY,Z

P⊗nY,Z
(
Ecn,j

)
≤ exp

(
−
t2j
2

)
,

for each j ∈ N. We conclude by the union bound that:

inf
PY,Z∈PY,Z

P⊗nY,Z (En) ≥ 1−
∑

{j:δj≥δ∗∗}
exp

(
−
t2j
2

)
.

Now note that with c1 = 5, c2 = (3/(2κ))2/5 and tj =
√
c1 log(c2 · j), we have:

∑
{j:δj≥δ∗∗}

exp

(
−
t2j
2

)
≤
∞∑
j=1

exp

(
−
t2j
2

)

=

∞∑
j=1

exp

(
−c1 log(c2 · j)

2

)

=

∞∑
j=1

(c2 · j)−
c1
2

=
2(1− κ)

3

∞∑
j=1

(
1

j

)5/2

≤ 2(1− κ)

3

(
3

2

)
= 1− κ.

Thus we conclude:

inf
PY,Z∈PY,Z

P⊗nY,Z (En) ≥ κ. (3.131)

The remainder of the proof proceeds in two parts:

1. We will show that on the event En we have for any γ ∈ Γ, En(γ) ≤ (2 − 1/a) (E ∗(γ) ∨ δ∗∗). We will

then use this fact to argue that, on En, for any δ ≥ δ∗∗ we have G ∗(δ) ⊆ Gn((2− 1/a)δ).

2. We will show that on the event En we have for any γ ∈ Γ, E ∗(γ) ≤ a (En(γ) ∨ δ∗∗). We will then use

this fact to argue that, on En, for any δ ≥ aδ∗∗ we have Gn(δ/a) ⊆ G ∗(δ).

Throughout this proof, let λ∗(θ, γ), λ̂(θ, γ), θ∗(γ), θ̂(γ), γ∗ and γ̂ be as in Remark 3.B.1.
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Part 1: We will prove that on the event En we have En(γ) ≤ (2 − 1/a) (E ∗(γ) ∨ δ∗∗) for any γ ∈ Γ.

First, consider any γ with σ := E ∗(γ) ≥ δ∗∗. Pick any ε > 0 such that δ∗∗ ≥ ε, which is possible since

δ∗∗ > T ](1− 1/a) ≥ 0. Then on the event En we have:

En(γ) := sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ) + 3ε

= inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

+

(
inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

)
−
(

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
+ 3ε

≤ sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

+

(
inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

)
−
(

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
+ 3ε

= E ∗(γ) +

(
inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

)
−
(

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
+ 3ε.

Now note:

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ̂), γ̂, λ) + ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ), γ, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ̂), γ̂, λ) + 2ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ), γ, λ)− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂)) + 2ε

= Ph`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ))− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂)) + 2ε.

Similarly:

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ), γ, λ) + ε

≤ max
λ∈Λ

Pnh`b(·, θ∗(γ̂), γ̂, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ), γ, λ) + 2ε

≤ max
λ∈Λ

Pnh`b(·, θ∗(γ̂), γ̂, λ)− Pnh`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ)) + 2ε

= Pnh`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))− Pnh`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ)) + 2ε.

Thus we conclude:

En(γ) ≤ E ∗(γ) + 7ε+ Ph`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ))− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))

−
(
Pnh`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ))− Pnh`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))

)
.
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However, γ ∈ G ∗(σ) by assumption, and by Lemma 3.B.9 we have γ̂ ∈ G ∗(σ) on the event En. Thus, the

right side of the previous display can be bounded above:

Ph`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ))− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))−
(
Pnh`b(·, θ̂(γ), γ, λ∗(θ̂(γ), γ))− Pnh`b(·, θ∗(γ̂)

)
≤ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

sup
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))| .

Furthermore, for any σ ≥ δ∗∗, on the event En this final quantity is bounded above by T (σ); this follows

from the definition of T (σ) and the monotonicity of the map:

x 7→ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(x)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| .

Thus on En:

En(γ) ≤ E ∗(γ) + T (σ) + 7ε

= E ∗(γ) +
T (σ)

σ
σ + 7ε

≤ E ∗(γ) + sup
δ≥σ

(
T (δ)

δ

)
σ + 7ε

= E ∗(γ) + T [(σ)σ + 7ε

= E ∗(γ) + T [(σ)E ∗(γ) + 7ε.

Now, since σ ≥ δ∗∗ > T ](1 − 1/a) we have T [(σ) ≤ T [(δ∗∗) ≤ 1 − 1/a. Thus, on the event En, if γ is such

that E ∗(γ) ≥ δ∗∗, we have:

En(γ) ≤
(

2− 1

a

)
E ∗(γ) + 7ε.

Since ε > 0 is any value such that δ∗∗ ≥ ε, and thus can be made arbitrarily small, we conclude that on the

event En we have for any γ with E ∗(γ) ≥ δ∗∗:

En(γ) ≤
(

2− 1

a

)
E ∗(γ).

Now consider the case when σ := E ∗(γ) ≤ δ∗∗. By the same derivation as above we obtain:

En(γ)

≤ E ∗(γ) + sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))|+ 7ε.

By monotonicity, we have:

sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))|

≤ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(δ∗∗)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| .

Furthermore, on the event En we have:

sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(δ∗∗)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| ≤ T (δ∗∗).
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Thus, on the event En:

En(γ) ≤ E ∗(γ) + T (δ∗∗) + 7ε

≤ E ∗(γ) + sup
δ≥δ∗∗

(
T (δ)

δ

)
δ∗∗ + 7ε

= E ∗(γ) + T [(δ∗∗)δ∗∗ + 7ε

≤ E ∗(γ) +

(
1− 1

a

)
δ∗∗ + 7ε

≤ δ∗∗ +

(
1− 1

a

)
δ∗∗ + 7ε

=

(
2− 1

a

)
δ∗∗ + 7ε.

Since ε > 0 is any value such that δ∗∗ ≥ ε, and thus can be made arbitrarily small, we conclude that on the

event En we have for any γ:

En(γ) ≤
(

2− 1

a

)
(E ∗(γ) ∨ δ∗∗) .

We will use this result to argue that, on the event En, if δ ≥ δ∗∗ then E ∗(γ) ≤ δ =⇒ En(γ) ≤ (2− 1/a)δ.

There are two cases:

(i) E ∗(γ) ≤ δ∗∗ ≤ δ, which implies on the event En:

En(γ) ≤
(

2− 1

a

)
(E ∗(γ) ∨ δ∗∗) =

(
2− 1

a

)
δ∗∗ ≤

(
2− 1

a

)
δ.

(ii) δ∗∗ ≤ E ∗(γ) ≤ δ, which implies on the event En:

En(γ) ≤
(

2− 1

a

)
(E ∗(γ) ∨ δ∗∗) =

(
2− 1

a

)
E ∗(γ) ≤

(
2− 1

a

)
δ.

Thus we conclude that for any δ ≥ δ∗∗, on En we have that E ∗(γ) ≤ δ =⇒ En(γ) ≤ (2 − 1/a)δ. Now

recall that we have E ∗(γ) ≤ δ ⇐⇒ γ ∈ G ∗(δ) and En(γ) ≤ (2− 1/a)δ ⇐⇒ γ ∈ Gn((2− 1/a)δ). Thus, we

conclude that for any δ ≥ δ∗∗, on the event En:

G ∗(δ) ⊆ Gn((2− 1/a)δ),

as desired.

Part 2: We will prove that on the event En we have E ∗(γ) ≤ a (En(γ) ∨ δ∗∗) for any γ ∈ Γ. If γ is such

that E ∗(γ) ≤ δ∗∗ then this is trivially true (since a > 1). Now consider any γ with σ := E ∗(γ) ≥ δ∗∗. Pick

any ε > 0 such that δ∗∗ ≥ ε, which is possible since δ∗∗ > T ](1− 1/a) ≥ 0. Then on the event En we have:

E ∗(γ) := sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ) + 3ε

= inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

+

(
sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

)
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−
(

sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

)
+ 3ε

= E ∗(γ) +

(
inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

)
−
(

sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

)
+ 3ε.

Now note:

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ), γ, λ) + ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ∗), γ∗, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ), γ, λ) + 2ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ∗), γ∗, λ)− Ph`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ)) + 2ε

≤ Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Ph`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ)) + 2ε.

Similarly:

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ) + 3ε

≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ) + 4ε

≤ max
λ∈Λ

Pnh`b(·, θ∗(γ), γ, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ) + 5ε

≤ Pnh`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ))− Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗)) + 5ε.

Thus we conclude:

E ∗(γ) ≤ En(γ) + 10ε+ Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Ph`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ))

−
(
Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Pnh`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ))

)
.

However, γ ∈ G ∗(σ) by assumption, and E ∗(γ∗) ≤ ε ≤ E ∗(γ) = σ implies γ∗ ∈ G ∗(σ). Thus, the right side

of the previous display can be bounded above:

Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Ph`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ))

−
(
Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Pnh`b(·, θ∗(γ), γ, λ̂(θ∗(γ), γ))

)
≤ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| .

Furthermore, for any σ ≥ δ∗∗, on the event En this final quantity is bounded above by T (σ); this follows

from the definition of T (σ) and the monotonicity of the map:

x 7→ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(x)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| .
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Thus on En:

E ∗(γ) ≤ En(γ) + T (σ) + 10ε

= En(γ) +
T (σ)

σ
σ + 10ε

≤ En(γ) + sup
δ≥σ

(
T (δ)

δ

)
σ + 10ε

= En(γ) + T [(σ)σ + 10ε

= En(γ) + T [(σ)E ∗(γ) + 10ε.

Now, since σ ≥ δ∗∗ > T ](1 − 1/a) we have T [(σ) ≤ T [(δ∗∗) ≤ 1 − 1/a. Thus, on the event En, if γ is such

that σ = E ∗(γ) ≥ δ∗∗, we have:

E ∗(γ) ≤ En(γ) +

(
1− 1

a

)
E ∗(γ) + 10ε

=⇒ E ∗(γ) ≤ aEn(γ) + 10aε.

Since ε > 0 is any value such that δ∗∗ ≥ ε, and thus can be made arbitrarily small, we conclude that on the

event En we have for any γ:

E ∗(γ) ≤ a (En(γ) ∨ δ∗∗) .

We will use this result to argue that, on the event En, if δ/a ≥ δ∗∗ then E ∗(γ) ≤ δ. There are two cases:

(i) En(γ) ≤ δ∗∗ ≤ δ/a, which implies on the event En:

E ∗(γ) ≤ a (En(γ) ∨ δ∗∗) = aδ∗∗ ≤ δ.

(ii) δ∗∗ ≤ En(γ) ≤ δ/a, which implies on the event En:

E ∗(γ) ≤ a (En(γ) ∨ δ∗∗) = aE ∗(γ) ≤ δ.

Thus we conclude that for any δ/a ≥ δ∗∗, on En we have that En(γ) ≤ δ/a =⇒ E ∗(γ) ≤ δ. Now recall that

we have En(γ) ≤ δ/a ⇐⇒ γ ∈ Gn(δ/a) and E ∗(γ) ≤ δ ⇐⇒ γ ∈ G ∗(δ). Thus, we conclude that for any

δ ≥ aδ∗∗, on the event En:

Gn(δ/a) ⊆ G ∗(δ),

as desired. This completes the proof.

�

3.B.2 Auxiliary Results and Proofs

On Issues of Measurability

The following discussion mirrors the discussion in Dudley (2010) Section 3.3 and Dudley (2014) Section 5.3.

Let X be a Polish space, and let B(X ) be the Borel σ−algebra on X . Then (X ,B(X )) is a measurable

space. If P is a probability law on B(X ), then (X ,B(X ), P ) is a probability space. Now for any B ⊂ X , we
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can define the outer measure P ∗ on B as:

P ∗(B) := inf{P (C) : B ⊂ C and C ∈ B(X )}.

By Theorem 3.3.1 in Dudley (2010), there always exists C ∈ B(X ) such that P ∗(B) = P (C), and such a set

C is called a measurable cover of B. Now define the collection of null sets for P as:

Null(P ) := {A ⊂ X : P ∗(A) = 0}.

Furthermore, let B∗P (X ) denote the smallest σ−algebra generated by B(X )∪Null(P ). By Proposition 3.3.2

in Dudley (2010), we have:

B∗P (X ) := {B ⊂ X : B∆C ∈ Null(P ) for some C ∈ B(X )},

where B∆C = (B \C)∪ (C \B). We can now extend the measure P from B(X ) to a measure P on B∗P (X )

as follows: if B∆C ∈ Null(P ) and C ∈ B(X ), then set P (B) = P (C). Proposition 3.3.3 in Dudley (2010)

verifies this is a valid extension; that is, P is a measure on B∗P (X ) and P agrees with P for all sets in B(X ).

However, note that the collection B∗P (X ) clearly depends on the probability measure P . Indeed, if Q is

another measure on B(X ), and B∗Q(X ) is defined in an analogous manner to B∗P (X ), then it is possible for

the two collections B∗P (X ) and B∗Q(X ) to differ because the null sets of P and Q differ. On the other hand,

clearly both B∗P (X ) and B∗Q(X ) must have many elements in common; for example, both collections must

contain the Borel sets B(X ).

A set B ∈ B∗P (X ) is called measurable for the completion of P . If for every probability measure P the

set B is measurable for the completion of P , then we call B universally measurable. We will denote the

universally measurable sets as B∗(X ); it is easily verified that B∗(X ) is also a σ−algebra.47 By definition,

for any two probability measures P and Q, both B∗P (X ) and B∗Q(X ) contain the universally measurable

sets. Also note that, in our example, clearly the Borel sets B(X ) are universally measurable.

A subset A ⊂ X of a Polish space X (with the Borel σ−field) is called B(X )-analytic if there exists a

compact metric space Y such that A is the projection onto X of some B ∈ B(X ) ⊗ B(Y).48 A function

f : A→ [−∞,∞] is called lower (or upper) semi-analytic if A is an analytic set and {x ∈ A : f(x) < c} (or

{x ∈ A : f(x) ≥ c}) is an analytic set for every c ∈ R; that is, if the epigraph (or hypograph) of f is an

analytic set. In a Polish space, every analytic set is universally measurable. We refer the reader to Chapter

8 of Cohn (2013) for additional details.

Lemma 3.B.1 (Infimum over Random Sets is Lower Semi-Analytic). Suppose that Assumptions 3.2.1,

3.2.2 and 3.2.3 hold. Then for any lower semi-analytic function f : V × Γ×Θ× {0, 1}J → R, the function

flb,1(y, z, u, θ, γ, λ) given by:

flb,1(y, z, u, θ, γ, λ) := inf
y?∈G?(y,z,u,θ,γ)

f(v, θ, γ, λ), (3.132)

is lower semi-analytic; that is, {(y, z, u, γ, θ, λ) : flb,1(y, z, u, θ, γ, λ) < r} is an analytic set for every r ∈ R,

and thus is universally measurable. In addition, the function flb,2(y, z, θ, γ, λ) given by:

flb,2(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

flb,1(y, z, u, θ, γ, λ), (3.133)

47This follows from the fact that an arbitrary intersection of σ−algebras is a σ−algebra.
48We note that this is one of many equivalent definitions of an analytic set. See Chapter 8 of Cohn (2013). Our definition is

from Stinchcombe and White (1992).
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is also lower semi-analytic; that is, {(y, z, θ, γ, λ) : flb,2(y, z, θ, γ, λ) < r} is an analytic set for every r ∈ R,

and thus is universally measurable.

Remark 3.B.3. Defining fub,1(y, z, u, θ, γ, λ) and fub,2(y, z, u, θ, γ, λ) as the analogous functions with the

infimum replaced with the supremum, it is possible to show that fub,1(y, z, u, θ, γ, λ) and fub,2(y, z, u, θ, γ, λ)

are upper semi-analytic.

Proof of Lemma 3.B.1. Recall that under Assumption 3.2.3, the multifunction G?(y, z, u, θ, γ) is Effros mea-

surable with respect to the product Borel σ−algebra B(Y)⊗B(Z)⊗B(U)⊗B(Γ). By Molchanov (2017)

Theorem 1.3.3 this implies that:

Graph(G?) ∈ B(Y)⊗B(Z)⊗B(U)⊗B(Θ)⊗B(Γ).

Thus Graph(G?) is a Borel (and thus also an analytic) set. Now note that G?(y, z, u, θ, γ) can be rewritten

as:

G?(y, z, u, θ, γ) := {y? ∈ Y? : (y, z, u, y?, θ, γ) ∈ Graph(G?)} .

The fact that flb,1 : V × Γ×Θ× {0, 1}J → R is lower semi-analytic then follows directly from the selection

Theorem of Shreve and Bertsekas (1978), p. 968.49 Taking flb,1(y, z, u, θ, γ, λ) as lower semi-analytic, a

nearly identical proof shows that flb,2(y, z, θ, γ, λ) is also lower semi-analytic. �

Proposition 3.B.1. Suppose the assumptions of Theorem 3.3.1 hold. Then the maps γ 7→ I`b[ϕ](γ), Iub[ϕ](γ)

are universally measurable.

Proof. We will focus on the map γ 7→ I`b[ϕ](γ), as the proof for the upper envelope function is symmetric.

By Theorem 3.3.1 we have:

I`b[ϕ](γ) = inf
θ∈Θ

max
λ∈{0,1}J

∫
h`b(y, z, θ, γ, λ) dPY,Z ,

where:

h`b(y, z, θ, γ, λ) := inf
u∈G−(y,z,θ)

inf
y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
.

Suppose that h`b(y, z, θ, γ, λ) is lower semi-analytic (we will return to this in a moment). Then by proposition

7.46 in Bertsekas and Shreve (1978), the map:

(θ, γ, λ) 7→
∫
h`b(y, z, θ, γ, λ) dPY,Z , (3.134)

is lower semi-analytic. Furthermore, suppose that g1 : R→ R and g2 : R→ R are lower semi-analytic. The

function g(x) = g1(x) ∨ g2(x) satisfies:

g−1((−∞, r)) = g−1
1 ((−∞, r)) ∪ g−1

2 ((−∞, r)).

Since analytic sets are closed under (countable) unions and intersections (Parthasarathy (2005) Theorem 3.1),

we have that g is lower semi-analytic whenever g1 and g2 are lower semi-analytic. From this we conclude

49See also Bertsekas and Shreve (1978) Proposition 7.47, p. 179.
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that the function:

(θ, γ) 7→ max
λ∈{0,1}J

∫
h`b(y, z, θ, γ, λ) dPY,Z ,

is lower semi-analytic, being the pointwise maximum of at most 2J lower semi-analytic functions of the form

(3.134). Finally, by the selection Theorem of Shreve and Bertsekas (1978), p. 968 (see also Bertsekas and

Shreve (1978) Proposition 7.47) we have the map:

γ 7→ sup
θ∈Θ

max
λ∈{0,1}J

∫
h`b(y, z, θ, γ) dPY,Z ,

is lower semi-analytic, and thus universally measurable. It thus remains only to show that h`b(y, z, θ, γ, λ) is

lower semi-analytic. By Lemma 3.B.1, h`b(y, z, θ, γ) will be lower semi-analytic if we can show the function:

(v, θ, γ, λ) 7→ ϕ(v) + µ∗
J∑
j=1

λjmj(y, z, u, θ), (3.135)

is lower semi-analytic. Since both ϕ(v) and {mj(y, z, u, θ)}Jj=1 are Borel measurable by assumption, since the

composition of Borel measurable functions are Borel measurable we conclude that (3.135) is Borel measurable.

The conclusion then follows from the fact that every Borel measurable function is lower semi-analytic. �

A nearly identical argument shows that, for every fixed sequence (ξ1, . . . , ξn) ∈ {−1, 1}n, the Rademacher

complexity:

((y1, z1), . . . , (yn, zn)) 7→ ||R||(H`b),

is universally measurable. This is stated as a corollary of the previous result for easy reference.

Corollary 3.B.1. Suppose the assumptions of Theorem 3.3.1 hold, and suppose that the sequence (Y1, Z1),

. . ., (Yn, Zn) are the coordinate projections of the product probability space ((Y×Z)n, (B(Y)⊗B(Z))⊗n, P⊗nY,Z)).

Then the map:

((Y1, Z1), . . . , (Yn, Zn)) 7→ ||R||(H`b),

is universally measurable; that is, it is measurable for the completion of P⊗nY,Z for any PY,Z ∈ PY,Z .

Respect for Weak Dominance of the Preference Relation in Definition 3.2.3

Lemma 3.B.2. Let (Ω,A) be a measurable space, and let X1, X2 : Ω × T → R be two stochastic processes

such that X1(·, t) and X2(·, t) are measurable for each t, and ω 7→ inft∈T X1(ω, t), inft∈T X2(ω, t) are uni-

versally measurable; that is, measurable with respect to the completion of any probability measure on (Ω,A).

Furthermore, suppose that for any probability measure on (Ω,A) we have X1(ω, t) ≤ X2(ω, t) a.s. for every

t ∈ T , and let c : P → R++ be any value depending only on P , where P is the set of all probability measure

on (Ω,A). Finally, let c1, c2 : (0, 1)× P → R++ be the smallest values satisfying:

P

(
inf
t∈T

X1(ω, t) + c1(κ, P ) ≥ c(P )

)
≥ κ,

P

(
inf
t∈T

X2(ω, t) + c2(κ, P ) ≥ c(P )

)
≥ κ,

for each κ ∈ (0, 1). Then for every P ∈ P we have c2(κ, P ) ≤ c1(κ, P ) for every κ ∈ (0, 1).
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Proof. Fix any probability measure P ∈ P. Then by assumption:

X1(ω, t) ≤ X2(ω, t) a.s. ∀t ∈ T .

This implies:

inf
t∈T

X1(ω, t) ≤ X2(ω, t) a.s. ∀t ∈ T ,

which in turn implies:

inf
t∈T

X1(ω, t) ≤ inf
t∈T

X2(ω, t) a.s.,

and thus:

inf
t∈T

X1(ω, t)− c(P ) ≤ inf
t∈T

X2(ω, t)− c(P ) a.s.

Let N denote the null set for which this relation is not true (this set may depend on P ∈ P). Then we have

for every x ∈ R:{
ω : inf

t∈T
X1(ω, t)− c(P ) > x

}
∩N c ⊆

{
ω : inf

t∈T
X2(ω, t)− c(P ) > x

}
∩N c,

By assumption, these events belong to the universal σ−algebra generated by A, and so are measurable with

respect to the completion of any P ∈ P. This implies that for every x ∈ R:

P

(
ω : inf

t∈T
X1(ω, t)− c(P ) > x

)
≤ P

(
ω : inf

t∈T
X2(ω, t)− c(P ) > x

)
.

Now taking any κ ∈ (0, 1) and setting x = −c1(κ, P ) we have:

κ ≤ P
(
ω : inf

t∈T
X1(ω, t) + c1(κ, P ) > c(P )

)
≤ P

(
ω : inf

t∈T
X2(ω, t) + c1(κ, P ) > c(P )

)
.

By definition, this implies c2(κ, P ) can be no larger than c1(κ, P ); that is, c2(κ, P ) ≤ c1(κ, P ). Since

κ ∈ (0, 1) was arbitrary, we conclude that c2(κ, P ) ≤ c1(κ, P ) for every κ ∈ (0, 1). Since P ∈ P was also

arbitrary we conclude that for every P ∈ P we have c2(κ, P ) ≤ c1(κ, P ) for every κ ∈ (0, 1). This completes

the proof. �

Results on Interchanging Integrals and Supremum/Infimum

Lemma 3.B.3 (Interchange of Integral and Supremum/Infimum). Let (V,B(V)) and (V ′,B(V ′)) be mea-

surable spaces with V and V ′ as Polish spaces. Let V ∈ V be any random variable defined on the probability

space (Ω,A, P ) with (marginal) distribution PV = P ◦V −1. Furthermore, let G : V → V ′ be an almost surely

non-empty Effros-measurable multifunction. Then for any bounded and measurable function ϕ : V ×V ′ → R,

we have: ∫
sup

v′∈G(v)

ϕ(v, v′) dPV = sup
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV , (3.136)∫

inf
v′∈G(v)

ϕ(v, v′) dPV = inf
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV , (3.137)
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In particular, if:

PV ′|V := {PV ′|V : V ′ ∼ PV ′|V , V ′ : V → V ′ is measurable and PV ′|V (V ′ ∈ G(V )|V = v) = 1 a.s.},

then: ∫
sup

v′∈G(v)

ϕ(v, v′) dPV = sup
PV ′|V ∈PV ′|V

∫
ϕ(v, v′) d(PV ′|V × PV ), (3.138)∫

sup
v′∈G(v)

ϕ(v, v′) dPV = inf
PV ′|V ∈PV ′|V

∫
ϕ(v, v′) d(PV ′|V × PV ). (3.139)

Proof of Lemma 3.B.3. Since G is Effros measurable, by Theorem 1.3.3 in Molchanov (2017) we have that

gr(G) ∈ B(V)⊗B(V ′), and thus gr(G) is trivially an analytic set. Now define:

grv(G) := {v′ ∈ V ′ : (v, v′) ∈ gr(G)}.

Now let:

ϕ∗(v) := sup
v′∈G(v)

ϕ(v, v′) = sup
v′∈grv(G)

ϕ(v, v′).

Furthermore, define the set:

M := {v ∈ ΠV(gr(G)) : ∃v′ ∈ grv(G) s.t. ϕ(v, v′) = ϕ∗(v)} .

where ΠV : V × V ′ → V is the projection operator. Fix any ε > 0. By the Exact Selection Theorem

(Shreve and Bertsekas (1979), p.16) there exists a universally measurable function ṽ′ : V → V ′ such that

(v, ṽ′(v)) ∈ gr(G) for every v ∈ ΠV(gr(G)) and:

ϕ(v, ṽ′(v))

= ϕ∗(v), if v ∈M,

≥ ϕ∗(v)− ε, if v /∈M.

This allows us to write: ∫
sup

v′∈G(v)

ϕ(v, v′) dPV ≤
∫
ϕ(v, ṽ′(v)) dPV + ε.

Since ṽ′ is a (universally) measurable selection, clearly we have:∫
ϕ(v, ṽ′(v)) dPV ≤ sup

V ′∈Sel(G)

∫
ϕ(v, V (v)) dPV

It suffices to show:

sup
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV ≤

∫
sup

v′∈G(v)

ϕ(v, v′) dPV .

For any ε > 0, let V ′ε ∈ Sel(G) satisfy:

sup
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV ≤

∫
ϕ(v, V ′ε (v)) dPV + ε.
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Furthermore, let N := {v : Vε(v) /∈ G(v)}. Then by definition of Sel(G) we have P (N) = 0. Thus:∫
ϕ(v, Vε(v)) dPV =

∫
Nc
ϕ(v, V ′ε (v)) dPV ≤

∫
Nc

sup
v′∈G(v)

ϕ(v, v′) dPV ≤
∫

sup
v′∈G(v)

ϕ(v, v′) dPV .

Combining everything we have:∫
sup

v′∈G(v)

ϕ(v, v′) dPV ≤ sup
V ′∈Sel(G)

∫
ϕ(v, V (v)) dPV + ε ≤

∫
sup

v′∈G(v)

ϕ(v, v′) dPV + 2ε

Since ε > 0 was arbitrary, we conclude:∫
sup

v′∈G(v)

ϕ(v, v′) dPV = sup
V ′∈Selu.m.(G)

∫
ϕ(v, V ′(v)) dPV .

Since each V ′ ∈ Selu.m.(G) is universally measurable, each V ′ can be associated with a B(V)−measurable

random variable Ṽ ′ such that V ′ = Ṽ ′ a.s. Thus we can conclude:∫
sup

v′∈G(v)

ϕ(v, v′) dPV = sup
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV .

To show the final claim, note that for any V ′ : V → V ′ we have:

PV ′|V (V ′ = v′|V = v) = 1{V ′(v) = v′}.

i.e. the conditional distribution of V ′ is degenerate. Thus for any V ′ ∈ Sel(G):∫ ∫
ϕ(v, v′) d(PV ′|V × PV ) =

∫
ϕ(v, v′)1{V ′(v) = v′} dPV

=

∫
ϕ(v, V ′(v)) dPV .

By definition of PV ′|V , we conclude that:

sup
V ′∈Sel(G)

∫
ϕ(v, V ′(v)) dPV = sup

PV ′|V ∈PV ′|V

∫
ϕ(v, v′) d(PV ′|V × PV ).

�

Results on Error Bounds

In the next Lemma we focus on the lower envelope function, although clearly an analogous result is true for

the upper envelope function. For notational simplicity, denote:

ϕ∗ := inf
θ∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ . (3.140)

We now have the following result:

Lemma 3.B.4 (Equality Between Primal and Penalized Problems). Suppose the Assumptions of Theorem

3.3.1 hold. Then there exists functions λ`bj : Θ × PY,Z → {0, 1}, j = 1, . . . , J , depending only on θ and the
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distribution PY,Z , such that:

ϕ∗ = inf
θ∈Θ

inf
PU|Y,Z∈PU|Y,Z(θ)

(
inf

PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
.

Remark 3.B.4. Recall that PY,Z is the set of all Borel probability measures on Y × Z.

Proof of Lemma 3.B.4. First, note that for any functions λ`bj : Θ× PY,Z → {0, 1}, j = 1, . . . , J , we have:

ϕ∗ := inf
θ∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ

= inf
θ∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

sup
λ∈RJ+

(∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λjEPY,Z,U [mj(y, z, u, θ)]

)

≥ inf
θ∈Θ∗

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

(∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)

≥ inf
θ∈Θ

inf
PU|Y,Z∈PU|Y,Z(θ)

(
inf

PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
.

It thus suffices to show that there exists functions λ`bj : Θ × PY,Z → {0, 1} for j = 1, . . . , J satisfying the

reverse inequality. This is done constructively. In particular, define:

J ∗(θ, PY,Z) :=

{
j ∈ {1, . . . , J} : inf

PU|Y,Z∈PU|Y,Z(θ)
EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

= inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+
}
.

That is, the set J ∗(θ, PY,Z) returns the indices of the weakly positive (i.e. weakly violated) moment functions

that obtain the inner maximum in the problem:

inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+.

Now set:

λ`bj (θ, PY,Z) := 1 {j ∈ J ∗(θ, PY,Z)} . (3.141)

To show why this choice works, begin by fixing any θ ∈ Θ∗δ . By Assumption 3.3.1(ii) we have:

C2d(θ,Θ∗) ≥ ϕ∗ − inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ . (3.142)

Furthermore, from Assumption 3.3.1(i), since θ ∈ Θ∗δ by assumption, we have:

C1d(θ,Θ∗) = C1 min{δ, d(θ,Θ∗)} (3.143)

≤ inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+

= inf
PU|Y,Z∈PU|Y,Z(θ)

λ`bj (θ, PY,Z)|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+

= inf
PU|Y,Z∈PU|Y,Z(θ)

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]
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≤
J∑
j=1

inf
PU|Y,Z∈PU|Y,Z(θ)

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

≤ inf
PU|Y,Z∈PU|Y,Z(θ)

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]. (3.144)

Now by construction we have µ∗ ≥ C2/C1. Thus:

C2d(θ,Θ∗) ≤ µ∗C1d(θ,Θ∗). (3.145)

Now use (3.145) to combine (3.142) and (3.144) and rearrange to obtain:

ϕ∗ ≤ inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ

+ µ∗ inf
PU|Y,Z∈PU|Y,Z(θ)

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

≤ inf
PU|Y,Z∈PU|Y,Z(θ)

(
inf

PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
,

which holds for all θ ∈ Θ∗δ . To complete the proof, consider any θ ∈ Θ \Θ∗δ . Recall from the assumptions of

Theorem 3.3.1 that ϕ : V → [ϕ`b, ϕub] ⊂ R. Then using Assumption 3.3.1 we have:

inf
PU|Y,Z∈PU|Y,Z(θ)

 inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]


≥ ϕ`b + µ∗ inf

PU|Y,Z∈PU|Y,Z(θ)

∫  J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

 d(PU |Y,Z × PY,Z)

≥ ϕ`b + µ∗ inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)] |+

≥ ϕ`b + µ∗C1 min{δ, d(θ,Θ∗)}

= ϕ`b + µ∗C1δ

≥ ϕ∗,

where the last line follows since µ∗ ≥ (ϕub − ϕ`b)/(C1δ) ≥ (ϕ∗ − ϕ`b)/(C1δ). Since we have shown the

inequality holds for every θ ∈ Θ, we have:

inf
θ∈Θ

inf
PU|Y,Z∈PU|Y,Z(θ)

(
inf

PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v) dPVγ + µ∗

J∑
j=1

λ`bj (θ, PY,Z)EPY,Z,U [mj(y, z, u, θ)]

)
≥ ϕ∗.

This completes the proof.

�

Lemma 3.B.5. Suppose the assumptions of Theorem 3.3.1 hold, and define:

h`b(y, z, θ, γ) := inf
u∈G−(y,z,θ)

inf
y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
.
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where λ`bj : Θ× PY,Z → {0, 1}, j = 1, . . . , J , are as from Lemma 3.B.4. Then we have:∫
h`b(y, z, θ, γ) dPY,Z

≤ max
λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z , (3.146)

with equality holding in (3.146) if θ ∈ Θ∗.

Proof of Lemma 3.B.5. We have:∫
h`b(y, z, θ, γ) dPY,Z

:=

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
dPY,Z

= max
λj∈{0,1} s.t λj=λ`bj (θ,PY,Z)

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z

≤ max
λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z .

The first line holds by definition, the second line holds since the λj(θ, PY,Z) depends only on θ, and third

line holds because the unconstrained maximum is always weakly larger than the constrained maximum.

It remains only to show that the last inequality holds with equality whenever θ ∈ Θ∗. To do so it suffices

to show that for any θ ∈ Θ∗:

∫
h`b(y, z, θ, γ) dPY,Z ≥ max

λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z .

(3.147)

To this end, note that by Lemma 3.B.3 we have:∫
h`b(y, z, θ, γ) dPY,Z

=

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
dPY,Z

= inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
d(PU |Y,Z × PY,Z). (3.148)

Now since the infimum of the sum is larger than the sum of the infimums, we have:

inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λ`bj (θ, PY,Z)mj(y, z, u, θ)

)
d(PU |Y,Z × PY,Z)

≥ inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) d(PU |Y,Z × PY,Z)

+ inf
PU|Y,Z∈PU|Y,Z(θ)

µ∗
J∑
j=1

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]. (3.149)
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Now recall that λ`bj (θ, PY,Z) = 1 if and only if:

inf
PU|Y,Z∈PU|Y,Z(θ)

EPU|Y,Z×PY,Z [mj(y, z, u, θ)] = inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)]|+.

From here we conclude:

inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)]|+

= inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

≤ inf
PU|Y,Z∈PU|Y,Z(θ)

J∑
j=1

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

Thus:

inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) dPY,Z,U

+ inf
PU|Y,Z∈PU|Y,Z(θ)

µ∗
J∑
j=1

λ`bj (θ, PY,Z)EPU|Y,Z×PY,Z [mj(y, z, u, θ)]

≥ inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) dPY,Z,U

+ µ∗ inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)]|+. (3.150)

However, since θ ∈ Θ∗ by assumption, we have:

inf
PU|Y,Z∈PU|Y,Z(θ)

max
j=1,...,J

|EPU|Y,Z×PY,Z [mj(y, z, u, θ)]|+ = 0. (3.151)

Thus, combining (3.148), (3.149), (3.150) and (3.151) we can conclude:∫
h`b(y, z, θ, γ) dPY,Z ≥ inf

PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) d(PU |Y,Z × PY,Z). (3.152)

Now, applying Lemma 3.B.3 again we have:

inf
PU|Y,Z∈PU|Y,Z(θ)

∫
inf

y?∈G?(y,z,u,θ,γ)
ϕ(v) d(PU |Y,Z × PY,Z)

= inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v)PVγ . (3.153)

Now note for θ ∈ Θ∗:

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫
ϕ(v)PVγ

= inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

sup
λj∈R+

(∫
ϕ(v)PVγ + µ∗

J∑
j=1

λjEPU|Y,Z×PY,Z [mj(y, z, u, θ)]

)

≥ inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

max
λj∈{0,1}

(∫
ϕ(v)PVγ + µ∗

J∑
j=1

λjEPU|Y,Z×PY,Z [mj(y, z, u, θ)]

)
.

(3.154)
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Now by the minimax inequality:

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

max
λj∈{0,1}

(∫
ϕ(v)PVγ + µ∗

J∑
j=1

λjEPU|Y,Z×PY,Z [mj(y, z, u, θ)]

)

≥ max
λj∈{0,1}

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫ (
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPVγ . (3.155)

Finally, by iterated application of Lemma 3.B.3 we have:

max
λj∈{0,1}

inf
PU|Y,Z∈PU|Y,Z(θ)

inf
PY ?γ |Y,Z,U∈PY ?γ |Y,Z,U (θ,γ)

∫ (
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPVγ

≥ max
λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z . (3.156)

Combining (3.152), (3.153), (3.154), (3.155), and (3.156) we have:

∫
h`b(y, z, θ, γ) dPY,Z ≥ max

λj∈{0,1}

∫
inf

u∈G−(y,z,θ)
inf

y?∈G?(y,z,u,θ,γ)

(
ϕ(v) + µ∗

J∑
j=1

λjmj(y, z, u, θ)

)
dPY,Z ,

whenever θ ∈ Θ∗. This concludes the proof. �

Lemmas Supporting Theorem 3.4.1 on Learnability

Lemma 3.B.6. Suppose that F := {fα(·, θ) : X → R : θ ∈ Θ, α ∈ A} is a totally bounded parametric class

of measurable real-valued functions on the metric space (X , d), where (A, da) and (Θ, dθ) are also metric

spaces. Furthermore let G be a class of real-valued functions with each element g(·, θ) : X → R defined by:

g(x, θ) := inf
α∈C(x,θ)

fα(x, θ),

for some f ∈ F , where C(x, θ) is a non-empty multifunction for each (x, θ) pair. Then for any probability

measure Q we have:

N(ε,G, || · ||Q,2) ≤ N(ε/2,F , || · ||Q,2).

Proof of Lemma 3.B.6. As a parametric class of functions (parameterized by (α, θ)), the ε/2−cover of F
can be characterized by a collection of points {(αi, θi)}ni=1, where n = N(ε/2,F , || · ||Q,2). Denote such a

collection by N (F). We will show that for any g ∈ G there exists a pair (α′, θ′) ∈ N (F) such that:

|g(x, θ)− fα′(x, θ′)| ≤ ε.

Since every g ∈ G can be expressed as:

g(x, θ) = inf
α∈C(x,θ)

fα(x, θ),

it suffices to show there exists a pair (α′, θ′) ∈ N (F) such that:∣∣∣∣ inf
α∈C(x,θ)

fα(x, θ)− fα′(x, θ′)
∣∣∣∣ ≤ ε.
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Now let α∗ be any value satisfying: ∣∣∣∣ inf
α∈C(x,θ)

fα(x, θ)− fα∗(x, θ)
∣∣∣∣ ≤ ε/2.

That is, α∗ is a ε/2 solution to the minimization problem. Now choose the pair (α′, θ′) ∈ N (F) such that

|fα∗(x, θ) − fα′(x, θ′)| ≤ ε/2 (such a choice is always possible since N (F) is a ε/2−cover of F). Then we

have:

|g(x, θ)− fα′(x, θ′)| =
∣∣∣∣ inf
α∈C(x,θ)

fα(x, θ)− fα′(x, θ′)
∣∣∣∣

≤
∣∣∣∣ inf
α∈C(x,θ)

fα(x, θ)− fα∗(x, θ)
∣∣∣∣+ |fα∗(x, θ)− fα′(x, θ′)|

≤ ε/2 + ε/2

= ε.

This completes the proof.

�

Lemma 3.B.7. Let F be a symmetric class of measurable real-valued functions on a Polish space X , and

let ψ = (xi)
n
i=1 denote an arbitrary vector of n points from X . Then for any ε > 0:

E||Rn||(F) ≤ 2ε√
n

+ 2Diamψ,2(F)

√
logN(ε,F , || · ||ψ,2)

n
.

Proof of Lemma 3.B.7. Note that:

nE||Rn||(F) = nE sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(xi)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣
n∑
i=1

ξif(xi)

∣∣∣∣∣ .
Now recall that the Rademacher process

∑n
i=1 ξif(xi) is sub-Gaussian with respect to the euclidean distance

between the vectors (f(x1), . . . , f(xn)) and (f ′(x1), . . . , f ′(xn)) for f, f ′ ∈ F . We denote this euclidean

distance by ||f − f ′||ψ,2 to emphasize that the vector ψ = (xi)
n
i=1 is fixed. Fix an minimal ε−net F∗ ⊂ F in

the || · ||ψ,2 norm. There exists at least one function f ′ ∈ F∗ such that:

E sup
f∈F

∣∣∣∣∣
n∑
i=1

ξif(xi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣
n∑
i=1

ξif(xi)−
n∑
i=1

ξif
′(xi)

∣∣∣∣∣+ ε
√
n.

(For example, we can always take f ′ to be the element in F∗ to be closest to −f in the || · ||ψ,2 norm, which

is an element of F by symmetry.) Now for any f ∈ F , let f∗(f) ∈ F∗ be a function with ||f −f∗(f)||ψ,2 ≤ ε.
Then: ∣∣∣∣∣

n∑
i=1

ξif(xi)−
n∑
i=1

ξif
′(xi)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

ξif(xi)−
n∑
i=1

ξif
∗(f)(xi) +

n∑
i=1

ξif
∗(f)(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
i=1

ξif(xi)−
n∑
i=1

ξif
∗(f)(xi)

∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

ξif
∗(f)(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
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≤ sup
||f−f∗||ψ,2≤ε

∣∣∣∣∣
n∑
i=1

ξif(xi)−
n∑
i=1

ξif
∗(xi)

∣∣∣∣∣+ sup
f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
≤ sup
||f−f∗||ψ,2≤ε

n∑
i=1

|f(xi)− f∗(xi)|+ sup
f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
≤ sup
||f−f∗||ψ,2≤ε

√
n||f − f∗||ψ,2 + sup

f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
≤
√
nε+ sup

f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣ .
Note we have used the inequality ||f − f ′||ψ,1 ≤

√
n||f − f ′||ψ,2, where ||f − f ′||ψ,1 denotes the L1 distance

between f and f ′ at the points ψ = (xi)
n
i=1. Now for any value a > 0 we have:

exp

(
aE max

f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
)

≤ E exp

(
a max
f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
)

= E max
f∗,f ′∈F∗

exp

(
a

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
)

≤
∑

f,f∗∈F∗
E exp

(
a

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣
)

≤
∑

f,f∗∈F∗
exp

(
a2Diam2

ψ,2(F)/2
)

≤ N2(ε,F , || · ||ψ,2) exp
(
a2Diam2

ψ,2(F)/2
)
,

where the second-last inequality follows from the fact that the Rademacher process is sub-Gaussian with

parameter Diam2
ψ,2(F).50 Taking logs and dividing both sides by a > 0, we have:

E max
f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣ ≤ 2 logN(ε,F , || · ||ψ,2)

a
+
aDiam2

ψ,2(F)

2
.

Minimizing the upper bound with respect to “a” yields:51

E max
f∗,f ′∈F∗

∣∣∣∣∣
n∑
i=1

ξif
∗(xi)−

n∑
i=1

ξif
′(xi)

∣∣∣∣∣ ≤ 2Diamψ,2(F)
√

logN(ε,F , || · ||ψ,2)

We conclude that:

nE||Rn||(F) ≤ 2
√
nε+ 2Diamψ,2(F)

√
logN(ε,F , || · ||ψ,2).

�

50Recall a stochastic process (ω, t) 7→ X(ω, t) on a metric space (T, d) is sub-Gaussian with respect to the metric d if
E exp (λ (Xt −Xs)) ≤ exp(λ2d(t, s)2/2). For example, the Rademacher process is sub-Gaussian with respect to the euclidean
metric.

51The minimizing value is a = 2
(

logN(ε,F , || · ||ψ,2)/Diam2
ψ,2(F)

)1/2
.
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Lemma 3.B.8. Let G and H be two classes of functions and let F := {g + h : g ∈ G, h ∈ H}. Then:

N (ε,F , || · ||) ≤ N(ε/2,G, || · ||)N(ε/2,H, || · ||),

where || · || is any norm.

Remark 3.B.5. Note that a nearly identical proof of this result can be used to show that:

N (ε,F , || · ||) ≤ N(ε · a,G, || · ||)N(ε · b,H, || · ||),

where a, b > 0 are any values satisfying a+ b = 1.

Proof of Lemma 3.B.8. Suppose that N (ε/2,G, || · ||) = n and N(ε/2,H, || · ||) = m. It suffices to show

N (ε,F , || · ||) ≤ nm. Let N (G) denote the centres of the balls that obtain the n−cover of G and let N (H)

denote the centres of the balls that obtain the m−cover of H. Enumerate the elements of N (G) as g1, . . . , gn

and enumerate the elements of N (H) as h1, . . . , hm. Now define the following collections:

Gj := {g ∈ G : ||g − gj || ≤ ε/2}, Hk := {h ∈ H : ||h− hk|| ≤ ε/2},

for j = 1, . . . , n and k = 1, . . . ,m. Then {Gj} forms a ε/2−cover of G and {Hk} forms a ε/2−cover of H.

Now for any gj ∈ N (G) and hk ∈ N (H) let fjk = gj + hk, and define:

Fjk := {f : ||f − fjk|| ≤ ε}.

We will now argue that {Fjk} is a ε−cover of F . Note that if we can establish this, the proof will be

complete, since there are only nm sets Fjk. By construction each Fjk is a || · ||−ball of radius ε, so it only

remains to check that {Fjk} covers F . To do so, fix any f ∈ F . Then by definition f = g+h for some g ∈ G
and h ∈ H. Since {Gj} forms a ε/2−cover of G and {Hk} forms a ε/2−cover of H, we know there is some

gj ∈ N (G) and some hk ∈ N (H) such that ||g − gj || ≤ ε/2 and ||h− hk|| ≤ ε/2. But since fjk = gj + hk we

have that:

||f − fjk|| = ||(g + h)− (gj + hk)|| ≤ ||g − gj ||+ ||h− hk|| ≤ ε/2 + ε/2 = ε,

so that f ∈ Fjk, and so is an element of the cover {Fjk}. Since f ∈ F was arbitrary, we conclude that {Fjk}
covers F . This completes the proof.

�

A Lemma Supporting Theorem 3.5.2 and Lemma 3.5.1

Lemma 3.B.9. Let δ∗∗ be as in Lemma 3.5.1. If δ ≥ δ∗∗ ≥ ε > 0, then:

sup
PY,Z∈PY,Z

P⊗nY,Z (E ∗(γ̂) ≥ δ) ≤ 1− κ.

That is γ̂ ∈ G ∗(δ) with high probability when δ ≥ δ∗∗ ≥ ε > 0.

Proof. Throughout this proof, let λ∗(θ, γ), λ̂(θ, γ), θ∗(γ), θ̂(γ), γ∗ and γ̂ be as in Remark 3.B.1. Fix any

δ > δ∗∗ (the case when δ = δ∗∗ follows from continuity). If σ := E ∗(γ̂) ≥ δ ≥ ε > 0, then:

E ∗(γ̂) := sup
γ∈Γ

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)
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≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ) + 3ε

= inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

+

(
inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
−
(

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
+ 3ε

≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

−
(

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)

)
+ 4ε

Now note:

inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)− inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ̂, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Ph`b(·, θ, γ∗, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ̂), γ̂, λ) + ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ∗), γ∗, λ)−max
λ∈Λ

Ph`b(·, θ∗(γ̂), γ̂, λ) + 2ε

≤ max
λ∈Λ

Ph`b(·, θ̂(γ∗), γ∗, λ)− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂)) + 2ε

≤ Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂)) + 2ε.

Similarly:

inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)− inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ∗, λ)

≤ inf
θ∈Θ

max
λ∈Λ

Pnh`b(·, θ, γ̂, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ) + ε

≤ max
λ∈Λ

Pnh`b(·, θ∗(γ̂), γ̂, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ) + 2ε

≤ max
λ∈Λ

Pnh`b(·, θ∗(γ̂), γ̂, λ)−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗)) + 2ε

≤ Pnh`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))−max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗)) + 2ε.

Thus we have:

E ∗(γ̂) ≤ Ph`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Ph`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))

−
(

max
λ∈Λ

Pnh`b(·, θ̂(γ∗), γ∗, λ∗(θ̂(γ∗), γ∗))− Pnh`b(·, θ∗(γ̂), γ̂, λ̂(θ∗(γ̂), γ̂))

)
+ 8ε.

Furthermore, σ = E ∗(γ̂) ≥ E ∗(γ∗) implies that γ̂, γ∗ ∈ G (σ). Thus:

E ∗(γ̂) ≤ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| ,

which follows since ε > 0 can be made arbitrarily small. Now define:

En,j :=

{
sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))| ≤ T (δj)

}
,

(3.157)
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and:

En :=
⋂

{j:δj≥δ∗∗}
En,j .

Note by our choice of δ0 > 2H we have:

sup
PY,Z∈PY,Z

P⊗nY,Z
(
Ecn,0

)
= 0.

Furthermore, from the uniform version of Hoeffding’s inequality (e.g. Koltchinskii (2011) Theorem 4.6, p.71)

we have:

sup
PY,Z∈PY,Z

P⊗nY,Z
(
Ecn,j

)
≤ exp

(
−
t2j
2

)
,

for each j ∈ N. We conclude by the union bound that:

sup
PY,Z∈PY,Z

P⊗nY,Z (Ecn) ≤
∑

{j:δj≥δ∗∗}
exp

(
−
t2j
2

)
≤
∞∑
j=0

exp

(
−
t2j
2

)
≤ 1− κ.

Now on the event En, for every δ ≥ δ∗∗ we have:

sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(δ)

max
λ,λ′∈Λ

|(Pn − P ) (h`b(·, θ, γ, λ)− h`b(·, θ′, γ′, λ′))| ≤ T (δ).

Now suppose by way of contradiction that {E ∗(γ̂) ≥ δ} ∩ En 6= ∅. Then on this event we have:

σ := E ∗(γ̂)

≤ sup
θ,θ′∈Θ

sup
γ,γ′∈G ∗(σ)

max
λ,λ′∈Λ

|(Pnh`b(·, θ, γ, λ)− Pnh`b(·, θ′, γ′, λ′))− (Ph`b(·, θ, γ, λ)− Ph`b(·, θ′, γ′, λ′))|

≤ T (σ).

However, note that this implies that σ ≤ δ∗∗ on the event En. But since σ ≥ δ > δ∗∗ by assumption, we

have a contradiction. We conclude that {E ∗(γ̂)} ≥ δ} ∩ En = ∅, or equivalently that {E ∗(γ̂) ≥ δ} ⊆ Ecn,

where the event Ecn has probability at most 1− κ.

�

Appendix 3.C Additional Details for the Examples

3.C.1 Example 1: Simultaneous Discrete Choice

Verification of Assumptions 3.2.1, 3.2.2 and 3.2.3

We will now proceed to verify Assumption 3.2.1, 3.2.2 and 3.2.3. First note that Assumption 3.2.1 is trivially

satisfied, since the probability space (Ω,A, P ) is complete, and both U and Θ are compact metric spaces

with the euclidean norm.

To verify Assumption 3.2.2, note that the multifunction for the factual domain can be rewritten as:

G− (Y,Z, θ) =

{
u ∈ U :

uk ∈ [πk(Zk, Y−k; θ), 1], if Yk = 0,

uk ∈ [−1, πk(Zk, Y−k; θ)], if Yk = 1.

}
. (3.158)
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From here we conclude that, for any u ∈ U :

d(u,G− (Y, Z, θ))

= max
k

(
1{Yk = 0}|πk(Zk, Y−k; θ)− uk|+ + 1{Yk = 1}|uk − πk(Zk, Y−k; θ)|+

)
. (3.159)

Under our assumptions, this distance is the maximum of K measurable functions, and so is itself measurable.

Since u ∈ U was arbitrary, by the result of Himmelberg (1975) (see also Theorem 1.3.3 in Molchanov (2017))

this implies that G− is an Effros-measurable multifunction (w.r.t. B(Y)⊗B(Z)⊗B(Θ)), as desired. It is

then easily seen that the conditional distribution of the vector U given (Y,Z) satisfies (3.4) in Assumption

3.2.2 using the multifunction in (3.158) with θ = θ0. To complete the verification of Assumption 3.2.2, note

that all the moment functions from the moment conditions in (3.9) and (3.10) are bounded in absolute value

and Borel measurable (w.r.t. B(Y)⊗B(Z)⊗B(Θ)).

We now turn to the verification of Assumption 3.2.3. Recall the counterfactual multifunction:

G?(Z,U, θ, γ) :=
{
y? ∈ Y : y?k = 1{πk

(
γ(Zk, y

?
−k); θ

)
≥ Uk}, k = 1, . . . ,K.

}
. (3.160)

Close inspection reveals that:

d(y?,G? (Z,U, θ, γ)) = max
k

∣∣y?k − 1{πk (γ(Zk, y
?
−k); θ

)
≥ Uk}

∣∣ . (3.161)

Under our assumptions, this distance is also the maximum of K measurable functions, and so is itself

measurable. Since y? ∈ Y? was arbitrary, by the result of Himmelberg (1975) (see also Theorem 1.3.3 in

Molchanov (2017)) this implies that G? is an Effros-measurable multifunction (w.r.t. B(Y)⊗B(Z)⊗B(Z)⊗
B(Θ)⊗B(Γ)), as desired. Finally, it is easily seen that the conditional distribution of the vector Y ?γ given

(Y,Z, U) satisfies (3.6) in Assumption 3.2.3 using the multifunction in (3.12) with θ = θ0.

Verification of Assumption 3.3.1

We will first verify Assumption 3.3.1(ii) for some C2 ≥ 0 and δ > 0, and then will show that Assumption

3.3.1(i) is also satisfied for our choice of δ > 0.

As was mentioned in the main text, under our current assumptions for this example Assumption 3.3.1(ii) is

not satisfied. The issue is illustrated in Figures 3.5 and 3.6, and a case where Assumption 3.3.1(ii) is satisfied

is illustrated in Figure 3.7. The issue arises only when for some k ∈ {1, . . . ,K} and some z ∈ Z and y−k ∈ Y−k
we have: (i) the object of interest is P (Y ?γ,k = 1|Zk = z′, Y−k = y′−k) or P (Y ?γ,k = 1), (ii) the counterfactual

cutoff value πk(γ(z, y−k); θ∗) = 0 at some θ∗ ∈ ∂Θ∗, and (iii) if P (Yk = 1|Zk = z′, Y−k = y′−k) 6= 0.5,

where (z′, y′−k) = γ(z, y−k). In this knife-edge case, a very small change in θ∗ to some θ /∈ Θ∗ can cause a

discontinuous change in P (Y ?γ,k = 1|Zk = z′, Y−k = y′−k) or P (Y ?γ,k = 1).

To prevent such discontinuities in the value of the policy transform, we can introduce additional assump-

tions on the degree of smoothness of the distribution of Uk around zero. In particular, instead of the moment

conditions in (3.9) and (3.10) we propose imposing the constraints:

P
(
Uk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k

)
− 0.5 ≤ max{L0πk(z′, y′−k; θ), 0}, (3.162)

0.5− P
(
Uk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k

)
≤ max{−L0πk(z′, y′−k; θ), 0}, (3.163)

for some L0 > 0, for k = 1, . . . ,K, and for all z, z′ ∈ Z and y−k, y′−k ∈ YK−1. These constraints impose

a local Lipschitzian constraint on the distribution of Uk around zero. Note that by taking L0 sufficiently

large, these constraints will only be active when πk(z′, y′−k; θ) is close to zero. It is also easily verified that
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Figure 3.5: This figure illustrates a case violating Assumption 3.3.1(ii). The black dots • represent equal probability
masses (1/6) assigned by the conditional distribution of Uk given (z, y−k). The red dots • represent equal probability
masses (1/6) assigned by the conditional distribution of Uk given (z′, y′−k) = γ(z, y−k). In the upper portion of the
figure we have θ∗ ∈ Θ∗, the median zero assumption is satisfied (three black dots • and three red dots • on either
side of zero) and the maximum value of P (Y ?γ = 1|Zk = z, Y−k = y−k) at θ∗ is obtained at 1/6. However, in the
bottom portion of the figure a small change in the value of θ∗ ∈ Θ∗ to θ /∈ Θ∗ causes a violation of the median
zero assumption for the points (z, y−k) and (z′, y′−k). At the new value θ /∈ Θ∗ we have the maximum value of
P (Y ?γ = 1|Zk = z, Y−k = y−k) is 1. Note that the scale of the figure can be made arbitrarily small.

Figure 3.6: This figure illustrates a case violating Assumption 3.3.1(ii). The black dots • represent equal probability
masses (1/6) assigned by the conditional distribution of Uk given (z, y−k). The red dots • represent equal probability
masses (1/6) assigned by the conditional distribution of Uk given (z′, y′−k) = γ(z, y−k). In the upper portion of the
figure we have θ∗ ∈ Θ∗, the median zero assumption is satisfied (three black dots • and three red dots • on either side
of zero) and the maximum value of P (Y ?γ = 1|Zk = z, Y−k = y−k) at θ∗ is obtained at 1/2. However, in the bottom
portion of the figure a small change in the value of θ∗ ∈ Θ∗ to θ /∈ Θ∗ causes a violation of the median zero assumption
for the point (z′, y′−k). At the new value θ /∈ Θ∗ we have the maximum value of P (Y ?γ = 1|Zk = z, Y−k = y−k) is 1.
Note that the scale of the figure can be made arbitrarily small.

the new moment conditions implied by (3.162) and (3.163) also satisfy Assumption 3.2.2.

We claim that the constraints (3.162) and (3.163) imply that Uk is median zero and median independent
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Figure 3.7: This figure illustrates a case that does not violate Assumption 3.3.1(ii). The black dots • represent equal
probability masses (1/6) assigned by the conditional distribution of Uk given (z, y−k). The red dots • represent equal
probability masses (1/6) assigned by the conditional distribution of Uk given (z′, y′−k) = γ(z, y−k). In the upper
portion of the figure we have θ∗ ∈ Θ∗, the median zero assumption is satisfied (three black dots • and three red dots
• on either side of zero) and P (Y ?γ = 1|Zk = z, Y−k = y−k) = 1/6. In the bottom portion of the figure a small change
in the value of θ∗ ∈ Θ∗ to θ /∈ Θ∗ causes a violation of the median zero assumption for the point (z, y−k). However,
at the new value θ /∈ Θ∗ we still have that the maximum obtainable value of P (Y ?γ = 1|Zk = z, Y−k = y−k) is 1/6.

of (Z, Y−k). To see this, note that Uk has a median of zero given (z, y−k) if and only if:

(I) πk(zk, y−k; θ) ≤ 0 and P (Uk ≤ πk(zk, y−k; θ)|Z = zk, Y−k = y−k) ≤ 0.5; or

(II) πk(zk, y−k; θ) > 0 and P (Uk > πk(zk, y−k; θ)|Z = zk, Y−k = y−k) ≤ 0.5.

The idea behind these conditions is illustrated in Figure 3.8. Conversely, Uk does not have a median of zero

conditional on (z, y−k) if and only if:

(i) πk(zk, y−k; θ) > 0 and P (Uk ≤ πk(zk, y−k; θ)|Z = zk, Y−k = y−k) < 0.5; or

(ii) πk(zk, y−k; θ) ≤ 0 and P (Uk > πk(zk, y−k; θ)|Z = zk, Y−k = y−k) < 0.5.

Note that if (i) holds then (3.163) fails, and if (ii) holds then (3.162) fails. This implies that if both (3.162)

and (3.163) hold, then (i) and (ii) do not hold, and thus Uk is median zero and median independent of

(Z, Y−k). However, note that it is possible that either (I) or (II) is satisfied but one of (3.162) or (3.163)

fails, owing to the fact that together (3.162) and (3.163) are stronger than the median zero and median

independence restrictions initially imposed in (3.9) and (3.10).

We will now proceed to verify Assumption 3.3.1. First recall from the discussion in the text that πk is

a known measurable function of (Zk, Y−k, θ) that is linear in parameters θ and has a gradient (with respect

to θ) bounded away from zero for each (z, y−k). Thus, πk is Lipschitz in θ, and also satisfies a “reverse

Lipschitz” condition; that is, for each (z, y−k) we have:

L′k||θ − θ∗|| ≤ |πk(z, y−k; θ)− πk(z, y−k; θ∗)| ≤ Lk||θ − θ∗||,

for some L′k, Lk > 0. Now, if one of the constraints (3.162) or (3.163) is violated, we have one of the following

inequalities:

P (Ũk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k)− 0.5 > max{L0πk(z′, y′−k; θ), 0}, (3.164)
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Figure 3.8: This figure illustrates three scenarios, each scenario involving a different allocation of probability mass for
Uk, represented by the 6 dots • representing equal probability mass, and a different value of the cutoff πk(z, y−k; θ). In
scenario (A), πk(zk, y−k; θ) > 0 and P (Yk = 0|Z = zk, Y−k = y−k) ≤ 0.5. In this case the median zero condition can be
satisfied, for example, by the allocation of probability mass displayed in the figure. In scenario (B), πk(zk, y−k; θ) > 0
and P (Yk = 0|Z = zk, Y−k = y−k) > 0.5. Here there is no way of satisfying the median zero assumption, since too
much mass will always be assigned above zero. In scenario (C), πk(zk, y−k; θ) < 0 and P (Yk = 0|Z = zk, Y−k =
y−k) > 0.5. In this case the median zero condition can again be satisfied, for example, by the allocation of probability
mass displayed in the figure.

0.5− P (Ũk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k) > max{−L0πk(z′, y′−k; θ), 0}, (3.165)

Subtracting (3.164) from (3.162) and taking (z′, y′−k) = γ(z, y−k), we have:

P (Uk ≤ πk(γ(z, y−k); θ∗)|Zk = z, Y−k = y−k)− P (Ũk ≤ πk(γ(z, y−k); θ)|Zk = z, Y−k = y−k)

= P
(
Uk ≤ πk(z′, y′−k; θ∗)|Zk = z, Y−k = y−k

)
− P (Ũk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k)

< max{L0πk(z′, y′−k; θ∗), 0} −max{L0πk(z′, y′−k; θ), 0}

≤ max{L0πk(z′, y′−k; θ∗)− L0πk(z′, y′−k; θ), 0}

≤ L0|πk(z′, y′−k; θ∗)− πk(z′, y′−k; θ)|

≤ L0Lk||θ − θ∗||. (3.166)

Furthermore, subtracting (3.165) from (3.163) and again taking (z′, y′−k) = γ(z, y−k), we have:

P (Ũk ≤ πk(γ(z, y−k); θ)|Zk = z, Y−k = y−k)− P (Uk ≤ πk(γ(z, y−k); θ∗)|Zk = z, Y−k = y−k)

= P (Ũk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k)− P
(
Uk ≤ πk(z′, y′−k; θ∗)|Zk = z, Y−k = y−k

)
< max{−L0πk(z′, y′−k; θ∗), 0} −max{−L0πk(z′, y′−k; θ), 0}

≤ max{L0πk(z′, y′−k; θ)− L0πk(z′, y′−k; θ∗), 0}

160



www.manaraa.com

≤ L0|πk(z′, y′−k; θ∗)− πk(z′, y′−k; θ)|

≤ L0Lk||θ − θ∗||. (3.167)

From here we can deduce that Assumption 3.3.1(ii) is satisfied for any δ > 0 with C2 = L0L where L =

mink Lk.

To verify Assumption 3.3.1(i), we will first introduce the following Lemma and provide a sketch of its

proof:

Lemma 3.C.1. Consider the simultaneous discrete choice environment of Example 1, but with the new

moment conditions (3.162) and (3.163) in place of (3.9) and (3.10). Now fix some value θ ∈ Θ. If there

exists a random variable U with distribution PU |Y,Z ∈ PU |Y,Z(θ) satisfying:

P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5 ≤ max{L0πk(z, y−k; θ), 0}, (3.168)

0.5− P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) ≤ max{−L0πk(z, y−k; θ), 0}, (3.169)

for k = 1, . . . ,K and for every (z, y−k) ∈ Z × YK−1, then θ ∈ Θ∗.

Remark 3.C.1. Note that, precisely because of the result in this Lemma, the new moment conditions implied

by (3.162) and (3.163) satisfy the no-backtracking principle from Remark 3.2.1. Indeed, this Lemma shows

that (3.168) and (3.169) are sufficient to characterize the identified set. Since these moment conditions do

not depend on the counterfactual γ of interest, the no-backtracking principle is satisfied.

Proof. Note by assumption there exists a random variable U with distribution PU |Y,Z ∈ PU |Y,Z(θ) satisfying

(3.168) and (3.169) for k = 1, . . . ,K and for every (z, y−k) ∈ Z × YK−1. Take Ũ to be a random vector

satisfying:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) = P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) ,

for k = 1, . . . ,K and for every (z, y−k) ∈ Z × YK−1, so that Ũ satisfies (3.168) and (3.169). We must show

that we can fix probabilities of the form P (Ũk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k) for (z′, y′−k) 6= (z, y−k) in

a way that satisfies the remaining constraints from (3.162) and (3.163), as well as the constraints:

P (Uk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k) ≤ P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k),

if πk(z′, y′−k; θ) ≤ πk(z, y−k; θ), and:

P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) ≤ P (Uk ≤ πk(z′, y′−k; θ)|Zk = z, Y−k = y−k),

if πk(z, y−k; θ) ≤ πk(z′, y′−k; θ). However, such an allocation of probability is clearly always possible. �

The contrapositive of this result says that if θ /∈ Θ∗, then there is no random variable U with distribution

PU |Y,Z ∈ PU |Y,Z(θ) satisfying (3.168) and (3.169); in other words, if θ /∈ Θ∗, then every distribution PU |Y,Z ∈
PU |Y,Z(θ) violates either (3.168) or (3.169). Thus, the Lemma suggests that when analysing violations of

the moment conditions in order to verify Assumption 3.3.1(i), it suffices to focus on the moment conditions

(3.168) and (3.169).

Finally, there is an important property that will be utilized repeatedly when verifying Assumption 3.3.1(i):

for any PU |Y,Z ∈ PU |Y,Z(θ) and any PU ′|Y,Z ∈ PU |Y,Z(θ′), we must have:

P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) = P (U ′k ≤ πk(z, y−k; θ′)|Zk = z, Y−k = y−k) (3.170)
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for k = 1, . . . ,K and for every (z, y−k) ∈ Z × YK−1. Indeed, this property follows from the fact that both

PU |Y,Z and PU ′|Y,Z satisfy the support restrictions for the simultaneous discrete choice model at θ and θ′,

respectively, and thus they must both rationalize the same observed conditional choice probabilities.

Now we are prepared to verify Assumption 3.3.1(i). First fix some value of θ /∈ Θ. If PU |Y,Z(θ) is empty,

then Assumption 3.3.1(i) is satisfied for any C1, δ > 0. Thus, we will focus attention on the non-trivial case

where PU |Y,Z(θ) is non-empty. Note that if P (Yk = 1|Z = z, Y−k = y−k) = 0.5 for k = 1, . . . ,K and for every

(z, y−k) ∈ Z×YK−1, then (3.168) and (3.169) will be satisfied for any PU |Y,Z ∈ PU |Y,Z(θ). By Lemma 3.C.1

this implies θ ∈ Θ∗, contradicting the fact that θ /∈ Θ. We conclude that if P (Yk = 1|Z = z, Y−k = y−k) = 0.5

for k = 1, . . . ,K and for every (z, y−k) ∈ Z × YK−1 then θ /∈ Θ∗ implies PU |Y,Z(θ) is empty, a case

we have ruled out. Thus, we will take as a starting point that there exists at least one k and one pair

(z, y−k) ∈ Z × YK−1 such that P (Yk = 1|Z = z, Y−k = y−k) 6= 0.5. Now define:

τ := min
k

min
(z,y−k)

|0.5− P (Yk = 1|Z = z, Y−k = y−k)| s.t. |0.5− P (Yk = 1|Z = z, Y−k = y−k)| > 0.

(3.171)

By assumption and by construction we have τ > 0. We now consider violations of the moment conditions

(3.168) and (3.169) in turn. First, consider a violation of (3.168). In particular, for our fixed value of θ /∈ Θ

suppose:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5 > max{L0πk(z, y−k; θ), 0}, (3.172)

for some k and (z, y−k) pair, where Ũk is a subvector of Ũ whose distribution is a member of PU |Y,Z(θ).

Furthermore, let θ∗ ∈ Θ∗ be the element of Θ∗ closest to θ (such an element exists since Θ∗ will be closed,

which follows from continuity of the payoff functions). There are four cases to consider:

1. πk(z, y−k; θ∗) ≤ 0 and πk(z, y−k; θ) ≤ 0. Then we have:

max{L0πk(z, y−k; θ), 0} = 0. (3.173)

However, since πk(z, y−k; θ∗) ≤ 0 it must be that:

0.5 ≥ P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k) = P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k),

where we have used property (3.170) and the fact that θ∗ satisfies both (3.162) and (3.163). But then

this implies:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5 ≤ 0. (3.174)

Combining (3.173) and (3.174) contradicts the assumption of (3.172). Thus, this case is not possible

under the assumption of (3.172).

2. πk(z, y−k; θ∗) ≤ 0 and πk(z, y−k; θ) > 0. Then we have:

max{L0πk(z, y−k; θ), 0} = L0πk(z, y−k; θ). (3.175)

However, since πk(z, y−k; θ∗) ≤ 0 then it must be that:

0.5 ≥ P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k) = P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k),
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where we have used property (3.170) and the fact that θ∗ satisfies both (3.162) and (3.163). But then

this implies:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5 ≤ 0. (3.176)

Combining (3.175) and (3.176) contradicts the assumption of (3.172). Thus, this case is not possible

under the assumption of (3.172).

3. πk(z, y−k; θ∗) > 0 and πk(z, y−k; θ) ≤ 0. Then we have:

max{L0πk(z, y−k; θ), 0} = 0.

Then:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5−max{L0πk(z, y−k; θ), 0}

= P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5

≥ τ,

where the last line follows from the fact that P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) − 0.5 > 0 by

assumption of (3.172) and the fact πk(z, y−k; θ) ≤ 0, and by the definition of τ from (3.57).

4. πk(z, y−k; θ∗) > 0 and πk(z, y−k; θ) > 0. First note that by assumption we have:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5−max{L0πk(z, y−k; θ), 0}

> 0

≥ P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k)− 0.5−max{L0πk(z, y−k; θ∗), 0}.

Using (3.170) and the fact that πk(z, y−k; θ∗) > 0 and πk(z, y−k; θ) > 0, this implies πk(z, y−k; θ∗) >

πk(z, y−k; θ). Now let θ′ be a convex combination of θ∗ and θ satisfying:

P (U ′k ≤ πk(z, y−k; θ′)|Zk = z, Y−k = y−k)− 0.5− L0πk(z, y−k; θ′) = 0,

for some selection U ′k. Such an element always exists by linearity of πk. Then:

P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5−max{L0πk(z, y−k; θ), 0}

= P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)− 0.5−max{L0πk(z, y−k; θ), 0}

+ L0πk(z, y−k; θ′)− L0πk(z, y−k; θ′)

= L0πk(z, y−k; θ′)− L0πk(z, y−k; θ)

= L0|πk(z, y−k; θ′)− πk(z, y−k; θ)|

≥ L0L
′
k||θ′ − θ||

≥ L0L
′
k||θ∗ − θ||.

In the third last line we used the fact that πk(z, y−k; θ∗) > πk(z, y−k; θ). In the second last line we have

used the reverse Lipschitz condition, and in the final line we have used the fact that θ′ lies between θ

and θ∗, by virtue of being a convex combination of these elements.
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Next, consider a violation of (3.169). In particular, for our fixed θ /∈ Θ suppose:

0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) > max{−L0πk(z, y−k; θ), 0}, (3.177)

for some k and (z, y−k) pair, where Ũk is a subvector of Ũ whose distribution is is a member of PU |Y,Z(θ).

Again, let θ∗ ∈ Θ∗ be the element of Θ∗ closest to θ. There are again four cases to consider:

1. πk(z, y−k; θ∗) ≤ 0 and πk(z, y−k; θ) ≤ 0. First note that by assumption we have:

0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)−max{−L0πk(z, y−k; θ), 0}

> 0

≥ 0.5− P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k)−max{−L0πk(z, y−k; θ∗), 0}.

Using (3.170) and the fact that πk(z, y−k; θ∗) ≤ 0 and πk(z, y−k; θ) ≤ 0, this implies πk(z, y−k; θ∗) <

πk(z, y−k; θ). Now let θ′ be a convex combination of θ∗ and θ satisfying:

0.5− P (U ′k ≤ πk(z, y−k; θ′)|Zk = z, Y−k = y−k) + L0πk(z, y−k; θ′) = 0,

for some selection U ′k. Such an element always exists by linearity of πk. Then:

0.5− P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)−max{−L0πk(z, y−k; θ), 0}

= 0.5− P (Uk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)−max{−L0πk(z, y−k; θ), 0}

+ L0πk(z, y−k; θ′)− L0πk(z, y−k; θ′)

= L0πk(z, y−k; θ)− L0πk(z, y−k; θ′)

= L0|πk(z, y−k; θ)− πk(z, y−k; θ′)|

≥ L0L
′
k||θ − θ′||

≥ L0L
′
k||θ − θ∗||.

In the third last line we used the fact that πk(z, y−k; θ∗) < πk(z, y−k; θ). In the second last line we have

used the reverse Lipschitz condition, and in the final line we have used the fact that θ′ lies between θ

and θ∗, by virtue of being a convex combination of these elements.

2. πk(z, y−k; θ∗) ≤ 0 and πk(z, y−k; θ) > 0. Then we have:

max{−L0πk(z, y−k; θ), 0} = 0.

Then:

0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)−max{−L0πk(z, y−k; θ), 0}

= 0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k)

≥ τ,

where the last line follows from the fact that 0.5 − P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) > 0 by

assumption of (3.177) and the fact πk(z, y−k; θ) > 0, and by the definition of τ from (3.57).

3. πk(z, y−k; θ∗) > 0 and πk(z, y−k; θ) ≤ 0. Then we have:

max{−L0πk(z, y−k; θ), 0} = −L0πk(z, y−k; θ). (3.178)
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However, since πk(z, y−k; θ∗) > 0 then it must be that:

0.5 ≤ P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k) = P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k),

where we have used property (3.170) and the fact that θ∗ satisfies both (3.162) and (3.163). But then

this implies:

0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) ≤ 0. (3.179)

Combining (3.178) and (3.179) contradicts the assumption of (3.177). Thus, this case is not possible

under the assumption of (3.177).

4. πk(z, y−k; θ∗) > 0 and πk(z, y−k; θ) > 0. Then we have:

max{−L0πk(z, y−k; θ), 0} = 0. (3.180)

However, since πk(z, y−k; θ∗) > 0 then it must be that:

0.5 ≤ P (Uk ≤ πk(z, y−k; θ∗)|Zk = z, Y−k = y−k) = P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k),

where we have used property (3.170) and the fact that θ∗ satisfies both (3.162) and (3.163). But then

this implies:

0.5− P (Ũk ≤ πk(z, y−k; θ)|Zk = z, Y−k = y−k) ≤ 0. (3.181)

Combining (3.180) and (3.181) contradicts the assumption of (3.177). Thus, this case is not possible

under the assumption of (3.177).

Combining everything, we conclude that Assumption 3.3.1 holds with C1 = L0L
′ and δ = τ/(L0L

′),

where L′ = mink L
′
k.

Verification of Learnability

By the assumed linearity of πk with respect to θ, and since πk depends only on the subvector θk of θ, the

function (u, θ) 7→ πk(γ(z, y−k); θ)− u is a hyperplane in Rdk for each (z, y−k), where dk is the dimension of

θk. By Lemma 2.6.15 in Van Der Vaart and Wellner (1996), for example, Φ is a Vapnik-Chervonenkis (VC)

class with VC dimension at most dk + 2. Furthermore, recalle that Φ can be taken to be uniformly bounded

in absolute value by 1. Using, for example, Theorem 2.6.7 in Van Der Vaart and Wellner (1996), we can

deduce:

sup
Q∈Qn

logN (ε,Φ, || · ||Q,2) = O(1),

so that Φ easily satisfies the entropy growth condition. Now let j index a generic moment function:

mj(Y−k, Z, U, θ) =
(
1{Uk ≤ πk(z′, y′−k; θ)} −max{L0πk(z′, y′−k; θ), 0} − 0.5

)
1{Zk = z, Y−k = y−k},

and let Mj be the associated class of functions:

Mj = {mj(·, u, θ) : Y × Z → R : (u, θ) ∈ U ×Θ} .
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Note that the values (z′, y′−k) are not arguments of the function, but instead are associated with the index

j. Since πk takes values in the interval [−1, 1], the class Mj is uniformly bounded. We claim that there

exists no set of size 2 shattered by Mj , implying Mj is a VC-subgraph class. We will prove this by way of

contradiction. In particular, suppose that there exists two points (y1, z1) and (y2, z2), and values t1, t2 ∈ R
such that: ∣∣∣∣∣

{[
1{mj(y1, z1, u, θ) ≥ t1}
1{mj(y2, z2, u, θ) ≥ t2}

]
: (u, θ) ∈ U ×Θ

}∣∣∣∣∣ = 4. (3.182)

In other words, we suppose the set {(y1, z1), (y2, z2)} is shattered by Mj , and that t1, t2 ∈ R witness the

shattering. We have:

mj(y1, z1, u, θ) =
(
1{uk ≤ πk(z′, y′−k; θ)} −max{L0πk(z′, y′−k; θ), 0} − 0.5

)
1{z1,k = z, y1,−k = y−k},

mj(y2, z2, u, θ) =
(
1{uk ≤ πk(z′, y′−k; θ)} −max{L0πk(z′, y′−k; θ), 0} − 0.5

)
1{z2,k = z, y2,−k = y−k}.

Now consider two cases:

1. 1{z1,k = z, y1,−k = y−k} = 1{z1,k = z, y1,−k = y−k}: In this case the two functions mj(y1, z1, u, θ)

and mj(y2, z2, u, θ) are identical for all (u, θ) ∈ U ×Θ. This means (3.182) is impossible, since at least

one of the vectors (1, 0) and (0, 1) cannot be picked out by Mj .

2. 1{z1,k = z, y1,−k = y−k} 6= 1{z1,k = z, y1,−k = y−k}: In this case at least one of the functions

mj(y1, z1, u, θ) or mj(y2, z2, u, θ) is the zero function. Again, this means (3.182) is impossible. For

example, if mj(y1, z1, u, θ) is the zero function, then it is impossible forMj to pick out both (0, 0) and

(1, 0) or both (0, 1) and (1, 1).

Since (y1, z1) and (y2, z2) were arbitrary, we conclude that there exists no set of size 2 shattered by Mj .

This implies that Mj is a VC-subgraph class, and using, for example, Theorem 2.6.7 in Van Der Vaart and

Wellner (1996), we can deduce:

sup
Q∈Qn

logN (ε,Mj , || · ||Q,2) = O(1).

Thus, Mj easily satisfies the entropy growth condition. Finally, let j′ index a generic moment function:

mj(Y−k, Z, U, θ) =
(
0.5− 1{Uk ≤ πk(z′, y′−k; θ)} −max{−L0πk(z′, y′−k; θ), 0}

)
1{Zk = z, Y−k = y−k},

and let Mj′ be the associated class of functions:

Mj′ = {mj′(·, u, θ) : Y × Z → R : (u, θ) ∈ U ×Θ} .

A nearly identical argument as for Mj reveals that Mj′ is a VC-subgraph class and thus trivially satisfies

the entropy growth condition. We conclude using Theorem 3.4.1(ii) that our class of policies Γ is PAMPAC

learnable with a rate of convergence of O(n−1/2).

3.C.2 Example 2: Program Evaluation

Verification of Assumptions 3.2.1, 3.2.2 and 3.2.3

We will now proceed to verify Assumption 3.2.1, 3.2.2 and 3.2.3. First note that Assumption 3.2.1 is trivially

satisfied, since the probability space (Ω,A, P ) is complete, U is a compact subset of euclidean space, and
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Θ is a Polish space; in particular, since Z (and thus also X ) is finite, G can be considered as the set of all

positive measurable functions g : Z → [0, 1], in which case each g ∈ G has an equivalent representation as a

vector in [0, 1]|Z|. The same logic applies to each t ∈ T . Next, let us recall the multifunction:

G− (Y,D,Z, θ) := cl

{
(U0, U1, U) ∈ U :

Y = U0(1−D) + U1D,

D = 1{g(Z) ≥ U}

}
. (3.183)

Close inspection of this multifunction shows that:

G− (y, d, z, θ) =

{y} × [Y , Y ]× [g(z), 1], if d = 0,

[Y , Y ]× {y} × [0, g(z)], if d = 1.
(3.184)

Now for any (u0, u1, u) ∈ U we have:

d((u0, u1, u),G− (Y,D,Z, θ))

= Dmax{|u0 − Y |, g(Z)− u}+ (1−D) max{|u1 − Y |, Z − g(z)}. (3.185)

Since g ∈ G is measurable by definition, from here it is easily verified that the distance above is measurable

with respect to B(Y)⊗B(D)⊗B(Z). Since (u0, u1, u) ∈ U was arbitrary, by the result of Himmelberg (1975)

(see also Theorem 1.3.3 in Molchanov (2017)) this implies that G− is an Effros-measurable multifunction, as

desired. Modulo changes in notation, it is easily seen that the conditional distribution of the vector (U0, U1, U)

given (Y,D,Z) satisfies (3.4) in Assumption 3.2.2 using the multifunction in (3.15) with g(·) = g0(·). Finally,

note that all of the moment functions in the moment conditions (3.17) - (3.22) are measurable and bounded

by 1, and the moment functions from the moment conditions in (3.23) and (3.24) are measurable and bounded

by max{|Y |, |Y |}.
Turning to the counterfactual domain, recall the multifunction:

G?(Z,U0, U1, U, θ, γ) :=

{
(Y ?γ , D

?
γ) ∈ Y × {0, 1} :

Y ?γ = U0(1−D?
γ) + U1D

?
γ ,

D?
γ = 1{g(γ(Z)) ≥ U}

}
. (3.186)

Note here we take Y? = Y, although this is not necessary. Furthermore, close inspection of this multifunction

shows that:

G?(z, u0, u1, u, θ, γ) =

(u1, 1), if u ≤ g(γ(z)),

(u0, 0), if g(γ(z)) < u.
(3.187)

In this case, the counterfactual map in (3.26) is single-valued. In this case, Effros measurability is equivalent

to the usual notion of measurability for functions, and measurability of G? follows from familiar arguments

after noting that both g and γ are measurable functions. Finally, modulo changes in notation, it is easily seen

that the conditional distribution of the vector (Y ?γ , D
?
γ) given (Y,D,Z, U0, U1, U) satisfies (3.6) in Assumption

3.2.3 using the multifunction in (3.26) with g(·) = g0(·).
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Verification of Assumption 3.3.1

First we focus on (3.17) - (3.20). Since these moments do not depend on t ∈ T , to verify Assumption 3.3.1

it suffices to focus on the parameter g ∈ G. From the moment conditions (3.17) and (3.18) we have:

g(z0, x) = P (D = 1|Z = z0, X = x) ⇐⇒

E[(D − g0(z0, x))1{Z0 = z0, X = x}] ≤ 0

E[(g0(z0, x)−D)1{Z0 = z0, X = x}] ≤ 0
, (3.188)

and from (3.19) and (3.20) we have:

g0(z0, x) = P (U ≤ g0(z0, x)|X = x) ⇐⇒

E[(1{U ≤ g0(z0, x)} − g0(z0, x))1{X = x}] ≤ 0

E[(g0(z0, x)− 1{U ≤ g0(z0, x)})1{X = x}] ≤ 0
, (3.189)

For notational simplicity, let g0(z) := g0(z0, x) for z = (z0, x). From (3.188) we see that g0(z) is point-

identified. Define:

G∗ = {g : (g, t) ∈ Θ∗ for some t ∈ T }.

Then point-identification of g0 implies that G∗ is a singleton, and that for any g ∈ G:

d(g,G∗) = max
z∈Z
|g(z)− g0(z)|.

From here it is straightforward to use conditions (3.188) and (3.189) to argue that part (i) of Assumption

3.3.1 is satisfied with C1 = 1 for any δ > 0. In particular, suppose g /∈ G∗, and that z∗ ∈ Z satisfies:

d(g,G∗) = max
z∈Z
|g(z)− g0(z)| = |g(z∗)− g0(z∗)|.

Without loss of generality, suppose that g(z∗) > g0(z∗). Then from (3.188) we have:

E[(g0(z∗)−D)1{Z = z∗}] = 0 < E[(g(z∗)−D)1{Z = z∗}].

Thus:

E[(g(z∗)−D)1{Z = z∗}] = E[(g(z∗)−D)1{Z = z∗}]− E[(g0(z∗)−D)1{Z = z∗}]

= g(z∗)− g0(z∗)

= |g(z∗)− g0(z∗)|

= d(g,G∗).

Now to complete the verification of part (i) of Assumption 3.3.1 we turn to (3.21) - (3.24), which can be

written as:

E [t(z0, x)− 1{Z = z0, X = x}] = 0, ∀z0 ∈ Z0, x ∈ X , (3.190)

and:

E

[
Ud

(
1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)− 1{X = x}t(z0, x)

)]
≤ 0, ∀z0 ∈ Z0, x ∈ X , d ∈ {0, 1}. (3.191)
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Since these moments do not depend on g ∈ G, to verify Assumption 3.3.1 for these moments it suffices to

focus on the parameter t ∈ T . Now define:

T ∗ = {t : (g, t) ∈ Θ∗ for some g ∈ G}.

From (3.190) it is clear that t0 is also point identified. Since g0 is also point identified we have Θ∗ =

{g0} × {t0}. Because of this, we claim that it suffices to focus on the conditions from (3.190); indeed,

t /∈ T ∗ ⇐⇒ t 6= t0 implies that t /∈ T ∗ if and only if (3.190) is violated. Now consider any t /∈ T ∗ and let

(z∗0 , x
∗) satisfy:

(z∗0 , x
∗) = arg max

z0,x
|t(z0, x)− t0(z0, x)|.

Without loss of generality we can suppose t(z0, x) > t0(z0, x). Then:

E [t(z∗0 , x
∗)− 1{Z = z∗0 , X = x∗}] = E [t(z∗0 , x

∗)− 1{Z = z∗0 , X = x∗}]− E [t0(z∗0 , x
∗)− 1{Z = z∗0 , X = x∗}]

= t(z∗0 , x
∗)− t0(z∗0 , x

∗)

= |t(z∗0 , x∗)− t0(z∗0 , x
∗)|

= d(t, T ∗).

Combining everything, if J indexes all the moment constraints and if θ /∈ Θ∗ with θ = (g, t), then we know:

inf
PU0,U1,U|Y,D,Z∈PU0,U1,U|Y,D,Z(θ)

max
j∈J
|E[mj(y, d, z, u0, u1, u, θ)]|+ ≥ max{d(g,G∗), d(t, T ∗)} ≥ d(θ,Θ∗).

Conclude that Assumption 3.3.1 is satisfied with C1 = 1 for any δ > 0.

For part (ii) of Assumption 3.3.1, we claim that we can set C2 = 1. To show why, we will apply Lemma

3.3.1 to our environment. First note that ϕ is the identity function when we are interested in EP [Y ?γ ]. Thus

Lϕ = 1 in Lemma 3.3.1. Next, note from the definition of our support restrictions G− and G? we can deduce

that:

d((u0, u1, u),G−(y, d, z, θ)) =

max{|u0 − y|, |g(z)− u|+}, if d = 0,

max{|u1 − y|, |u− g(z)|+}, if d = 1.
(3.192)

d((y?, d?),G?(y, d, z, u0, u1, u, θ, γ)) =

max{|u0 − y|, |g(z)− u|+}, if u > g(γ(z)),

max{|u1 − y|, |u− g(z)|+}, if u ≤ g(γ(z)).
(3.193)

We now define the sets Θ− and Θ? given in Lemma 3.3.1 in the context of this example:

Θ−(y, d, z, u0, u1, u) ∩Θ∗δ :=
{
θ ∈ Θ∗δ : (u0, u1, u) ∈ G−(y, d, z, θ)

}

=


{θ ∈ Θ∗δ : g(z) ∈ [0, u]}, if d = 0 and u0 = y,

{θ ∈ Θ∗δ : g(z) ∈ [u, 1]}, if d = 1 and u1 = y,

∅, otherwise,

(3.194)
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Θ?(v, γ) ∩Θ∗δ := {Θ∗δ ∈ Θ : (y?, d?) ∈ G?(y, d, z, u0, u1, u, θ, γ)}

=


{θ ∈ Θ∗δ : g(γ(z)) ∈ [0, u]}, if d∗ = 0 and y? = u0,

{θ ∈ Θ∗δ : g(γ(z)) ∈ [u, 1]}, if d∗ = 1 and y? = u1,

∅, otherwise.

(3.195)

With these definitions, we have for any θ ∈ Θ∗δ :

d(θ,Θ−(y, d, z, u0, u1, u) ∩Θ∗δ) =


|g(z)− u|+, if d = 0 and u0 = y,

|u− g(z)|+, if d = 1 and u1 = y,

+∞, otherwise,

(3.196)

d(θ,Θ?(v, γ) ∩Θ∗δ) =


|g(γ(z))− u|+, if d∗ = 0 and y? = u0,

|u− g(γ(z))|+, if d∗ = 1 and y? = u1,

∅, otherwise.

(3.197)

Combining (3.192) with (3.196) we can verify condition (3.50) with `1 = 1. Furthermore, by combining

(3.193) with (3.197) we can verify condition (3.51) with `2 = 1. Applying Lemma 3.3.1 then yields the

choice C2 = Lϕ max{`1, `2} = 1, as claimed above. Note also that this value of C2 works for any δ > 0.

It thus suffices to set µ∗ = 1 in Theorem 3.3.1. Also, recall the moment functions for this example from

equations (3.17) - (3.20). The Theorem then states that the lower and upper bounds on the closed convex

hull of the identified set for E[Y ?γ ] can be computed as the solutions to the problems (3.52) and (3.53).

Intuitively, under the assumptions of the Theorem the infimum over θ ∈ Θ and supremum over θ ∈ Θ in

problems (3.52) and (3.53) will be obtained at the value θ0 ∈ Θ.

Verification of Learnability

We claim that Φ is a VC class with VC index of at most |Z| + 1. To prove this, we must show that there

exists no set of points Zn = {z1, . . . , zn} with n = |Z| + 1 shattered by Φ. Let t1, . . . , tn be arbitrary real

numbers. Now define the set:

B :=




1 { 1{g(γ(z1)) ≥ u}(u1 − u0) + u0 ≥ t1 }
1 { 1{g(γ(z2)) ≥ u}(u1 − u0) + u0 ≥ t2 }

...

1 { 1{g(γ(zn)) ≥ u}(u1 − u0) + u0 ≥ tn }

 : (u0, u1, u, θ) ∈ U ×Θ

 .

If B contains the vector b ∈ {0, 1}n, then we say that Φ “picks out” b. It suffices to show that there always

exists at least one vector b ∈ {0, 1}n that Φ fails to pick out. Since n > |Z|, there exists at least one z ∈ Z
that appears twice in the set Zn. Thus there is some i, j ∈ {1, . . . , n} such that zi = zj . Then regardless of

the values of (u0, u1, u, θ) we will always have:

1{g(γ(zi)) ≥ u}(u1 − u0) + u0 = 1{g(γ(zj)) ≥ u}(u1 − u0) + u0.

We then have:

1. If ti = tj then Φ fails to pick out any vector b ∈ {0, 1}n with bi = 0 and bj = 1.
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2. If ti < tj then Φ fails to pick out any vector b ∈ {0, 1}n with bi = 0 and bj = 1.

3. If tj < ti then Φ fails to pick out any vector b ∈ {0, 1}n with bi = 1 and bj = 0.

Since this covers all possibilities for ti, tj ∈ R, we conclude that there always exists at least one binary vector

that Φ fails to pick out, and thus Φ shatters no set of size n = |Z| + 1. Now using, for example, Theorem

2.6.7 in Van Der Vaart and Wellner (1996), we can deduce:

sup
Q∈Qn

logN (ε,Φ, || · ||Q,2) = O(1),

so that Φ easily satisfies the entropy growth condition. Now let j index a generic moment function:

mj(D,Z, θ) = (D − g(z0, x))1{Z0 = z0, X = x},

and let Mj be the associated class of functions:

Mj = {mj(·, θ) : {0, 1} × Z → R : θ ∈ Θ} .

Note this class indexes the moment functions from the moment conditions (3.17). Also note that (z0, x) are

not arguments of the moment function, but are instead are associated with the index j.

We claim that there exists no set of size 3 shattered by Mj , implying Mj is a VC-subgraph class. We

will prove this by way of contradiction. In particular, suppose that there exists three points (d1, z1), (d2, z2),

and (d3, z3) and values t1, t2, t3 ∈ R such that:∣∣∣∣∣∣∣

1{mj(d1, z1, θ) ≥ t1}
1{mj(d2, z2, θ) ≥ t2}
1{mj(d3, z3, θ) ≥ t3}

 : θ ∈ Θ


∣∣∣∣∣∣∣ = 8. (3.198)

In other words, we suppose the set {(d1, z1), (d2, z2), (d3, z3)} is shattered by Mj , and that t1, t2, t3 ∈ R
witness the shattering. We have:

mj(d1, z1, θ) = (d1 − g(z0, x))1{z1,0 = z0, x1 = x},

mj(d2, z2, θ) = (d2 − g(z0, x))1{z2,0 = z0, x2 = x}

mj(d3, z3, θ) = (d3 − g(z0, x))1{z3,0 = z0, x3 = x}.

Now consider two cases:

1. 1{z1,0 = z0, x1 = x} = 1{z2,0 = z0, x2 = x} = 1{z3,0 = z0, x3 = x} = 1: Note that since di ∈ {0, 1}, at

least two functions mj(d1, z1, θ), mj(d2, z2, θ) and mj(d3, z3, θ) are identical for all θ ∈ Θ. This means

(3.198) is impossible. For instance, suppose that mj(d1, z1, θ) = mj(d2, z2, θ). Then at least one of the

vectors (1, 0, 0) or (0, 1, 0) cannot be picked out by Mj .

2. Either 1{z1,k = z, y1,−k = y−k} = 0 or 1{z2,k = z, y2,−k = y−k} = 0 or 1{z3,k = z, y3,−k = y−k} = 0:

In this case at least one of the functions mj(d1, z1, θ), mj(d2, z2, θ) or mj(d3, z3, θ) is equal to zero for

all θ ∈ Θ. Again, this means (3.198) is impossible. For example, if mj(d1, z1, θ) is the zero function,

then it is impossible for Mj to pick out both (0, 0, 0) and (1, 0, 0).

Since (d1, z1), (d2, z2), and (d3, z3) were arbitrary, we conclude that there exists no set of size 3 shattered by

Mj . This implies thatMj is a VC-subgraph class, and using, for example, Theorem 2.6.7 in Van Der Vaart
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and Wellner (1996), we can deduce:

sup
Q∈Qn

logN (ε,Mj , || · ||Q,2) = O(1).

Thus, Mj easily satisfies the entropy growth condition. Given the relation between the moment functions

from (3.17) and (3.18), a nearly identical analysis holds for the moment functions from the moment conditions

(3.18).

Now let j′ index a generic moment function:

mj′(X,U, θ) = (1{U ≤ g(z0, x)} − g(z0, x))1{X = x},

and let Mj′ be the associated class of functions:

Mj′ = {mj′(·, u, θ) : X → R : (u, θ) ∈ U ×Θ} .

Note this class indexes the moment functions from the moment conditions (3.19). Also note that (z0, x) are

not arguments of the moment function, but are instead are associated with the index j′.

We claim that there exists no set of size 2 shattered by Mj′ , implying Mj′ is a VC-subgraph class. We

will prove this by way of contradiction. In particular, suppose that there exists two points x1 and x2, and

values t1, t2 ∈ R such that: ∣∣∣∣∣
{[

1{mj′(x1, u, θ) ≥ t1}
1{mj′(x2, u, θ) ≥ t2}

]
: (u, θ) ∈ U ×Θ

}∣∣∣∣∣ = 4. (3.199)

In other words, we suppose the set {x1, x2} is shattered by Mj′ , and that t1, t2 ∈ R witness the shattering.

We have:

mj′(x1, u, θ) = (1{u ≤ g(z0, x)} − g(z0, x))1{x1 = x},

mj′(x2, u, θ) = (1{u ≤ g(z0, x)} − g(z0, x))1{x2 = x}.

Now consider two cases:

1. 1{x1 = x} = 1{x2 = x} = 1: Then the two functions mj′(x1, u, θ) and mj′(x2, u, θ) are identical for

all (u, θ) ∈ U × Θ. This means (3.199) is impossible, since at least one of the vectors (1, 0) and (0, 1)

cannot be picked out by Mj′ .

2. Either 1{x1 = x} = 0 or 1{x2 = x} = 0: In this case at least one of the functions mj′(x1, u, θ) or

mj′(x2, u, θ) is the zero function. Again, this means (3.198) is impossible. For example, if mj′(x1, u, θ)

is the zero function, then it is impossible for Mj′ to pick out both (0, 0) and (1, 0).

Since x1 and x2 were arbitrary, we conclude that there exists no set of size 2 shattered byMj′ . This implies

that Mj′ is a VC-subgraph class, and using, for example, Theorem 2.6.7 in Van Der Vaart and Wellner

(1996), we can deduce:

sup
Q∈Qn

logN (ε,Mj′ , || · ||Q,2) = O(1).

Thus, Mj′ easily satisfies the entropy growth condition. Given the relation between the moment functions

from (3.19) and (3.20), a nearly identical analysis holds for the moment functions from the moment conditions

(3.20).
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Now let j′′ index a generic moment function:

mj′′(Z, θ) = t(z0, x)− 1{Z0 = z0, X = x)},

and let Mj′′ be the associated class of functions:

Mj′′ = {mj′′(·, θ) : Z → R : θ ∈ Θ} .

Note this class indexes the moment functions from the moment conditions (3.21). Also note that (z0, x) are

not arguments of the moment function, but are instead are associated with the index j′′.

We claim that there exists no set of size 3 shattered by Mj′′ , implying Mj′′ is a VC-subgraph class. To

see this, note that for any three points {z1, z2, z3} we have:

mj′′(z1, θ) = t(z0, x)− 1{z1,0 = z0, x1 = x)},

mj′′(z2, θ) = t(z0, x)− 1{z2,0 = z0, x2 = x)},

mj′′(z3, θ) = t(z0, x)− 1{z2,0 = z0, x2 = x)}.

The conclusion follows from the fact that two of these moment functions must always be the same. This

implies that Mj′′ is a VC-subgraph class, and using, for example, Theorem 2.6.7 in Van Der Vaart and

Wellner (1996), we can deduce:

sup
Q∈Qn

logN (ε,Mj′′ , || · ||Q,2) = O(1).

Thus, Mj′′ easily satisfies the entropy growth condition. Given the relation between the moment functions

from (3.21) and (3.22), a nearly identical analysis holds for the moment functions from the moment conditions

(3.22).

Finally, let j′′′ index a generic moment function:

mj′′′(Z,Ud, θ) = Ud

(
1{Z = z0, X = x}

∑
z0∈Z0

t(z0, x)− 1{X = x}t(z0, x)

)
.

and let Mj′′ be the associated class of functions:

Mj′′′ =
{
mj′′′(·, ud, θ) : Z → R : (ud, θ) ∈ [Y , Y ]×Θ

}
.

Note this class indexes the moment functions from the moment conditions (3.23). Also note that (z0, x) are

not arguments of the moment function, but are instead are associated with the index j′′′.

We claim that there exists no set of size 5 shattered byMj′′′ , implyingMj′′′ is a VC-subgraph class. To

see this, note that for any five points {z1, z2, z3, z4, z5} we have:

mj′′′(z1, ud, θ) = ud

(
1{z1,0 = z0, x1 = x}

∑
z0∈Z0

t(z0, x)− 1{x1 = x}t(z0, x)

)
,

mj′′′(z2, ud, θ) = ud

(
1{z2,0 = z0, x2 = x}

∑
z0∈Z0

t(z0, x)− 1{x2 = x}t(z0, x)

)
,

mj′′′(z3, ud, θ) = ud

(
1{z3,0 = z0, x3 = x}

∑
z0∈Z0

t(z0, x)− 1{x3 = x}t(z0, x)

)
,
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mj′′′(z4, ud, θ) = ud

(
1{z4,0 = z0, x4 = x}

∑
z0∈Z0

t(z0, x)− 1{x4 = x}t(z0, x)

)
,

mj′′′(z5, ud, θ) = ud

(
1{z5,0 = z0, x5 = x}

∑
z0∈Z0

t(z0, x)− 1{x5 = x}t(z0, x)

)
.

The conclusion follows from the fact that two of these moment functions must always be identical for all θ.

This implies that Mj′′′ is a VC-subgraph class, and using, for example, Theorem 2.6.7 in Van Der Vaart

and Wellner (1996), we can deduce:

sup
Q∈Qn

logN (ε,Mj′′′ , || · ||Q,2) = O(1).

Thus, Mj′′′ easily satisfies the entropy growth condition. Given the relation between the moment functions

from (3.23) and (3.24), a nearly identical analysis holds for the moment functions from the moment conditions

(3.24).

Combining everything and applying Theorem 3.4.1(ii), we thus have that the policy space Γ for this

problem is learnable.
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